Overview of Ozone Epidemiology

Julie E. Goodman, Ph.D., DABT, ACE, ATS

Independent Workshop on Ozone NAAQS Science and Policy Texas Commission on Environmental Quality April 7, 2015

EPA's Causal Determinations

Hoolth Outcome	Short-term Exposure		Long-term Exposure	
Health Outcome	2008 Review	2015 Review	2008 Review	2015 Review
Respiratory effects (including mortality)	Causal	Causal	Suggestive	Likely to be causal
All-cause mortality	Suggestive	Likely to be causal	Little evidence	Suggestive
Cardiovascular effects (including mortality)	Suggestive	Likely to be causal	No conclusion	Suggestive

Administrator's Proposed Conclusions – Epidemiology Studies

Exposure	Administrator's Conclusion	Elsewhere in Proposed Rule	Uncertainties
Short Term	Small, reversible changes in lung function and inflammation, respiratory ED visits, HA, all- cause mortality	 Administrator "places relatively less weight on epidemiology- based risk estimates" Heterogeneity across locations Exposure measurement error Shape of C-R functions in lower portions of ambient distributions 	Exp measurement error, modeling specifications, and confounders (<i>e.g.</i> , co-pollutants, temperature, flu epidemics)
Long Term	Respiratory morbidity and mortality "likely" to be causal	 Only one "well-designed" long- term mortality study (Jerrett <i>et</i> <i>al.</i>, 2009) Uncertainty about threshold 	Exp measurement error and confounders (<i>e.g.</i> , smoking, SES)

Ozone Epidemiology Study Designs

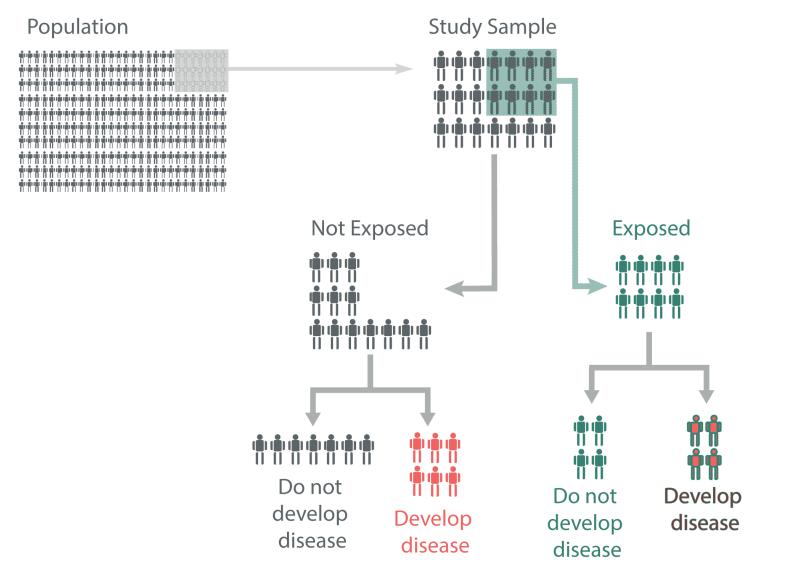
- Short-term exposure (hours, days, or weeks)
 - Time-series studies
 - Case-crossover studies
 - Panel studies
- Long-term exposure (months, years)
 - Longitudinal cohort studies
- One time point
 - Cross-sectional studies

Time-series Studies

- Aggregate estimates of exposure and health
 - Central site monitors and existing databases
- **<u>Population-average</u>** rates of acute health events
 - Hospital admissions (HA), emergency department (ED) visits, death rates

Case-crossover Studies

- Individual-level exposure estimates
 - Central site monitors often used
 - Case period vs. control period
- Individual-level acute health events
 - Administrative data often used: hospital admissions (HA), emergency department (ED) visits


Panel Studies

- Repeatedly assess health status of <u>individual subjects</u>
- Time-varying ozone exposure
 - Central-site monitoring or personal exposure
- Commonly used to investigate lung function and asthma symptoms

Longitudinal Cohort Studies

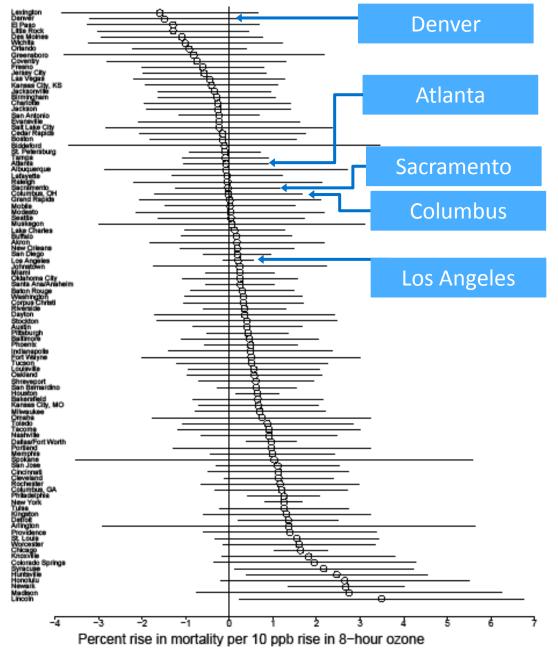
Cross-sectional Studies

- Exposure status and disease status are measured at one point in time or over a short period. No follow-up.
- Comparison of disease prevalence among exposed and non-exposed (*e.g.*, asthma prevalence)

Strengths of Ozone Epidemiology Studies

- Can assess health status in a large population over many years
- Can capture temporal ozone concentration variability
- Can make individual-level causal inference
- Can control for temporal trends
- Can deal with time-invariant subject characteristics

Limitations in Ozone Epidemiology Studies


- Ecological fallacy
- Confounding
- Prevalence measures (vs. incidence)
- Low compliance (panel studies)
- Exposure measurement error
- Disease measurement error
- Model misspecification
- Model selection bias
- Publication bias

Heterogeneity

8-HOUR OZONE-MORTALITY COEFFICIENTS RAW ESTIMATES AND 95% CONFIDENCE INTERVALS

Smith *et al.* (2009)