UNIVERSITY OF CALIFORNIA

Los Angeles

Costs of Compliance with Environmental Regulations:

A Case-Study of Rule 1501 Compliance Efforts

at Five Hughes Aircraft Company Business Units

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Environmental Science and Engineering

by

Kenneth P. Green

The dissertation of Kenneth P. Green is approved.

Arthur Winer

Genevieve Giuliano

The dissertation of Kenneth P. Green is approved.

Arthur Winer

Arthur Winer

Genevieve Giuliano

The dissertation of Kenneth P. Green is approved.

Arthur Winer

O.R. Lunt

Martin Wachs, Committee Chair

University of California, Los Angeles 1994

TABLE OF CONTENTS

LIST OF FIGURESv
LIST OF TABLESvi
LIST OF ACRONYMS AND ABBREVIATIONSvii
ACKNOWLEDGMENTSix
VITA
ABSTRACT OF THE DISSERTATIONx
INTRODUCTION
Mobile Source Contributions to Air Pollution in the South Coast Air Basin
Commuter Emissions in the South Coast Air Basin
Commuter Emissions Under the Federal Clean Air Act
Commuter Emissions Under the California Clean Air Act
Commuter Emissions and the California Air Resources Board
Commuter Emissions and the South Coast Air Quality Management District
Commuter Emissions and the Southern California Association of Governments
Using Transportation Control Measures to Reduce Air Pollution
Characteristics of the Study Population
The Goals of this Research

TABLE OF CONTENTS, CONT.,

RESE	ARCH METHODS	
	Limitations of the Data	. 20
	AVR Data Handling	. 22
	Rideshare Program Spending Data Handling and Aggregation Methods	. 24
	Incentive/Subsidy-Only Spending Data Handling	26
	Calculation of Quarterly-Average Net Monthly Rideshare Program Spending	. 27
	Calculation of Quarterly-Average Net Monthly Rideshare Program Spending Per Employee	27
	Calculation of Aggregate-Average Net Monthly Rideshare Spending Per Employee	28
	Regression Analysis of AVR Data	29
	Regression Analysis of Spending Data	29
	Multiple Regression Models	29
	Rule 1501 Plans	30
	Site Maps	30
	Personal Communication	31
RESUI	TS AND DISCUSSION	
	Rideshare Program Spending Net Spending Net Monthly Rideshare Program Spending Per Employee Aggregate-Average Monthly Rideshare Program Spending Per Employee Administrative Costs vs. Incentive/Subsidy-Only Spending	42 44
	Correlation of AVR with Rideshare Program Spending	57

TABLE OF CONTENTS, CONT.,

POLIC	CY IMPLICATIONS	63 64
	Annual Cycle in AVR	65
	Spending Trends	66
	The Cost of Delivering Rideshare Subsidies and Incentives	68
	Non-Correlation of AVR and spending	68
	Conclusion	70
APPE	NDIX 1 - SITE PROFILES & DATA TABLES	71
APPE	NDIX 2 - CURRENT VERSION OF RULE 1501	94
APPE	NDIX 3 - STATISTICAL ANALYSIS DOCUMENTATION 1	23
REFE	RENCES/BIBLIOGRAPHY1	53

ACKNOWLEDGMENTS

Quite a few people facilitated my progress toward this doctoral degree, and while I'm sure that the total accounting would be far too long to list here, I would like to acknowledge those who made the most powerful contributions.

At UCLA, I would like to acknowledge: Dr. Martin Wachs, my committee chair, for steady reassurance and cogent insight; Dr. Arthur Winer, Director of the ESE Program, for ongoing encouragement and timely critical review; Dr. Matthew Schall, my good friend and psychometrician, for badly needed statistical advice; and Marijke Bekken, for insights and advice on various and diverse aspects of this dissertation. The guidance that these people provided in all things academic was invaluable, and they have my deepest gratitude.

At Hughes, I would like to acknowledge: Renzo Venturo, my mentor, Corporate Director of Safety, Health and Environmental Affairs, for his tolerance of my renegade nature; Carol Gomez, Corporate Program Manager of Commuter Transportation, for her generous contribution of two years of expertise, advice, and corporate authority; Tom Boxwell, my manager, for his encouragement and support, and Craig Rogers, Michael Chaffee, Laura Oreskovich, Rose Farooq, Merilee Atkinson, and Mary Hendricks, past and present commuter transportation analysts and administrators of Hughes Aircraft Company, for their legwork, expertise, and frequent assistance.

At home, I would like to thank An Reine, a very fine lady, and an incredible editor. She was there when I needed her.

VITA

February 5, 1961

Born, Paterson, New Jersey, USA

1983

B.S., Biology

University of California, Los Angeles

Los Angeles, California

1988

M.S., Biology San Diego State University San Diego, California

PUBLICATIONS AND PRESENTATIONS

Roebuck, KA; Szeto, D; Green, K; et al. "Octamer and SPH motifs in the U1 enhancer cooperate to activate U1 RNA gene expression", Molecular and Cellular Biology, January 1990.

Smith, Lynda A., Kenneth P. Green, and Mackay Douglas M., (1990) "Quality of Ground Water in California: Overview and Implications.", <u>Proceedings of the Seventeenth Biennial Conference on Ground Water</u>, University of California, Water Resource Center, California Department of Water Resources & State Water Resources Control Board, Report #72, May 1990.

Presentation: <u>Hughes Telecommuting Pilot Program Evaluation</u>, Paper presented at the 73rd annual meeting of the Transportation Research Board.

ABSTRACT OF THE DISSERTATION

Costs of Compliance with Environmental Regulations:

A Case-Study of Rule 1501 Compliance Efforts

at Five Hughes Aircraft Company Business Units

by

Kenneth P. Green

Doctor of Environmental Science and Engineering
University of California, Los Angeles, 1994
Professor Martin Wachs, Chair

Average vehicle ridership (AVR) and net rideshare program spending at five Hughes Aircraft Company business units were examined based on data provided directly from Hughes Aircraft Company records. The data spanned from 17 to 29 months at the different units, from August, 1991 at all units to December, 1993 for several units.

AVR declined in 1992 at four of the five units, and declined in 1993 at all of the units. The declining AVR observed in this research may mark a reversal of the progress in increasing AVR noted by other investigators (Wachs & Guiliano, 1993). AVR varied strongly with time of year for both 1992 and 1993.

Slightly over \$2 million was spent on rideshare programs at these five business units during the study period, and the range of observed net monthly rideshare spending per employee, from \$4 to \$14, was consistent with the low end of the range of values reported in similar studies.

Net monthly rideshare program spending (total and per employee) declined at four of the five business units, and increased at one of the units over the study period.

The percentage of net spending actually disbursed in the form of subsidies or incentives ranged from 18% to 55% of net annual rideshare program spending in 1992 and 1993, with an aggregate mean of 28%.

Two of these findings have special significance for planners and regulators. First, no strong correlation was observed between AVR levels and net monthly rideshare spending per employee at any business unit over the time period covered by the data, suggesting that rideshare program spending was not the dominant factor determining employee commuting behavior.

Second, the strong relationship between AVR and the time of year observed in this research has important ramifications with regard to the structure of Rule 1501 and similar regulations. If this relationship is not unique to Hughes, it would indicate that the single annual AVR survey required by Rule 1501 for businesses subject to the rule may not produce an accurate impression of AVR as they actually exist over the course of the year.

INTRODUCTION

Air Pollution in the South Coast Air Basin

California's South Coast Air Basin (the Basin) has a severe air pollution problem; in fact, the Basin has the worst air quality in the United States.

Air quality in the Basin deteriorated severely as growth took place in population and industry after World War II, and although it has improved in recent years, levels of ozone, carbon monoxide (CO), fine particulate matter (PM10) and nitrogen dioxide (NO2) exceed state and national standards set to protect the public health (CCAA, 1990; CAAA, 1990). The only criteria pollutants for which the Basin does not exceed national standards are sulfur dioxide (SO2) and lead, mainly because there is little high-sulfur fuel use in the Basin, and lead has been removed from gasoline and most coating products (AOMP Preview, 1994).

Primary Pollutants	National Standards	State Standards	Ambient 1992 SCAB pollutant Levels and Exceedances
Ozone	0.12 ppm (1-hour)	0.009 ppm (1-hour)	0.30 ppm (118 Days/Federal)
CO	9.0 ppm	9.0 ppm	(164 Days/State) 18.8 ppm (8 hours)
CO	(8 hours) 35 ppm	(8 hours) 20.0 ppm	(31 Days/Federal) (36 Days/State
	(1-hour)	(1-hour)	28 ppm (1-hour) (5 Days/State)
NO ₂	0.053 ppm (Annual Average)	0.25 ppm (1-hour)	0.0507 ppm (Annual Avg.) 0.30 ppm (1-hour) (1 Day/State)
PM10	150 μg/m3 (24-hour)	50 μg/m3 (24-hour)	649 μg/m3 (24-hour) (3% Days/Federal) (66% Days/State)

Figure 1 - SCAB primary pollutants, National and State Standards, and 1992 Regional SCAB pollutant levels and exceedances. (Exceedances are listed in parentheses, after the monitored ambient pollutant level) (After Table 1-1, SCAQMD Trip Reduction Ordinance Handbook, May 1993, Third Draft)