UNIVERSITY OF CALIFORNIA

Los Angeles

In-Use Vehicle Hydrocarbon Speciation:

The Impacts of Fuel Types, Driving Cycles and Emission Status on the Reactivity of Vehicle Emissions

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Environmental Science and Engineering.

by

Jerry Ho

1996

The dissertation of Jerry Ho is approved

Villion C. Hand

William Hinds

Jaaac Koplan

Issac Kaplan

Kyle D. Bayer

Kyle Bayes

Arthur M. Winer, Committee Chair

University of California, Los Angeles

1996

TABLE OF CONTENTS

LIST OF FIGURES			viii
LIST OF TABLES XX			
GLOSSARY OF TERMS, ABBREVIATIONS AND SYMBOLS xviii			
ACKNOWLEDGMENTS			xxi
VITA			xxii
PUBLICATIONS AND PRESENTATIONS xx			
ABSTRACT OF THE DISSERTATION			
1.	INTRODUCTION		1
	1.0	Introduction	1
	1.1	Exhaust Emission Regulation	4
	1.2	Mobile Source Emission Factors	6
	1.2.1	Mobile Source Emission Inventory Models	8
	1.3	Reactivity Scales	11
	1.3.1	Incremental Reactivity Scale	11
	1.3.2	Maximum Incremental Reactivity	14
	1.3.3	Uncertainties of Maximum Incremental Reactivity Scale	15
	1.3.4	Limitations of Reactivity Scale Applications	16

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to Dr. Arthur Winer, my academic mentor, for his support and encouragement as well as my committee members, Dr. Issac Kaplan, Dr. Kyle Bayes and Dr. William Hinds. In addition, I would like to acknowledge my supervisors at California Air Resources Board (CARB), Raphael Susnowitz and Mary Hostak for their insightful comments and strong support as well as the staff of the Haggen-Smit Laboratory that performed the testing program and Southern Laboratory Branch that performed the speciation analysis.

I would also like to acknowledge the following ARB staff: Thu Vo, Henry Mano, Dr. David Chou, Dr. Shiou-Mei Huang, Paul Rieger, Dr. George Tsou, Dr. Pabalo Cicero, Dr. Leo Zafonte, Michael Benjamin, Dr.Veronica Pesinova and Satya Devesh for their useful comments on my dissertation.

Finally, I would like to thank Dr. Joy King and Chili Tang for their technical support in statistical analysis and computer programming as well as Connie Young, for her encouragement and support in all aspects during my graduate study at UCLA.

VITA

February 23, 1963	Born, Taipei, Taiwan
1985	D.V.M., Veterinary Medicine National Taiwan University, Taipei
1985-1988	Veterinarian Officer Department of Defense, Taiwan
1989	Lab Assistant I University of California, Los Angeles
1990	M.P.H., Environmental Health Science University of California, Los Angeles
1991	Graduate Student Assistant University of California, Los Angeles
1992	Air Pollution Specialist California Air Resources Board El Monte, California
1993-Present	Associate Air Pollution Specialist California Air Resources Board El Monte, California

PUBLICATION AND PRESENTATIONS

I.H. Suffet, J. Ho, D. Chou, D. Khiari and J. Mallevialle, (1995) Taste-and-Odor Problems Observed During Drinking Water Treatment In: "<u>Advances in Taste-and-Odor</u> <u>Treatment and Control</u>", edited by I.H. Suffet, J. Mallevialle and E. Kawczyski, Published by American Water Works Research Foundation, pp. 1-20.

J.P. Duguet, J. Mallevialle, J. Ho and I.H. Suffet, (1995) Oxidation Processes : The Relationship Between Chlorine and Chloramine Treatment of Tastes-and-Odors in Drinking Water, In: "Advances in Taste-and-Odor Treatment and Control", edited by I.H. Suffet, J. Mallevialle and E. Kawczyski, Published by American Water Works Research Foundation, pp. 75-107.

I.H. Suffet, J. Ho and J. Mallevialle, (1993) Off-Flavors in Raw and Potable Water In: "Food Taints and Off-Flavors", M. Saxby, Editor, Published Blackie & Sons, Ltd., Academic and Professionals, An Imprint of Chapman and Hall, London England, pp. 89-116.

ABSTRACT OF THE DISSERTATION

In-Use Vehicle Hydrocarbon Speciation: The Impacts of Fuel Types, Driving Cycles and Emission Status on the Reactivity of Vehicle Emissions

by

Jerry Ho

Doctor of Environmental Science and Engineering University of California, Los Angeles, 1996 Professor Arthur M. Winer, Chair

This project examined the relative significance of three emission factors (fuel, cycle and emission status) on in-use vehicle exhaust reactivity. Nineteen in-use vehicles were tested with randomly assigned seven fuel types and two driving cycles. The specific reactivity was used to compare the exhaust reactivity among tests. For each exhaust speciation profile, three different compound classes were analyzed: lightend HC, midrange HC, and carbonyls. The primary analysis focused on the effects of three emission factors on the total exhaust reactivity. The difference in total exhaust reactivity between the FTP and UC cycles was not statistically significant (p > 0.05). However, exhaust reactivity was a strong function of fuel type. On average, for Bag 1 the exhaust

xxiv

reactivity for California Phase 2 fuel was the lowest (16 % below the highest fuel type). The mean SR for high emitting vehicles was significantly higher than for low emitting vehicles for Bags 2 and 3 (11% and 15% higher than low emitters, respectively). In general, exhaust emissions were the highest in Bag 1 because the catalyst had not reached its optimal operating temperature. Thus, catalyst was critical in reducing the exhaust SR in Bags 2 and 3 for low emitting vehicles. The secondary analysis concentrated on the effects of three emission factors on the three compound classes. The mean SR differences between the FTP and UC cycles for Bag 2 lightend HC and carbonyls were statistically significant (p < 0.05). There was a significant fuel effect on the mean SR for the midrange HC (p < 0.05), but not for lightend HC and carbonyls (p > 0.05). Emission status showed a significant effect on the mean SR for all three compound classes. A further detailed analysis evaluated the effects of three emission factors on the weight percent of individual hydrocarbon species emitted. In general, the weight percent of the exhaust species from the lightend HC and midrange HC fuel fractions were significantly affected by the choice of fuel, while driving cycle and emission status had minimal effects. The weight percents for lightend HC species (non-fuel fraction) from low emitting vehicles were significantly lower than for the high emitting vehicles in Bags 2 and 3 (p-value < 0.05). The results of this research highlight the importance of including exhaust reactivity in current mobile source emission inventory model. This study also has significant implications for assessing the effectiveness of reducing exhaust reactivity through the use of reformulated gasolines and vehicle emission control devices such as catalytic converters.