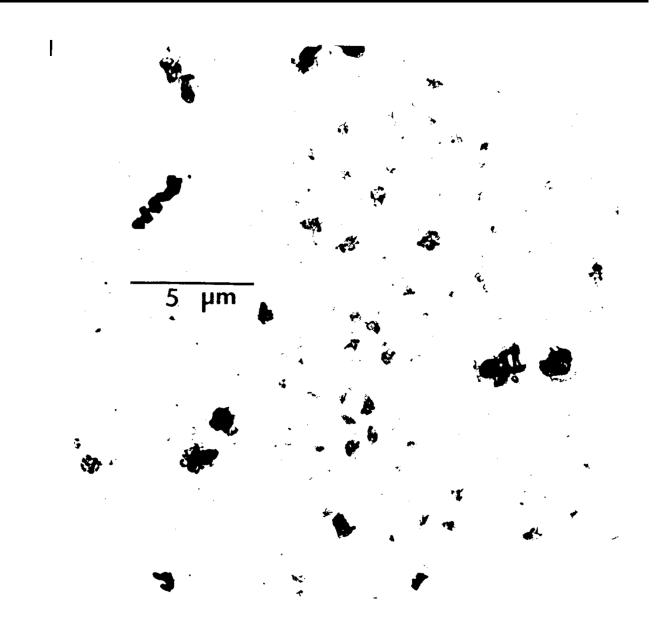
The Deposition and Fates of Inhaled Transport Related Particulate Material

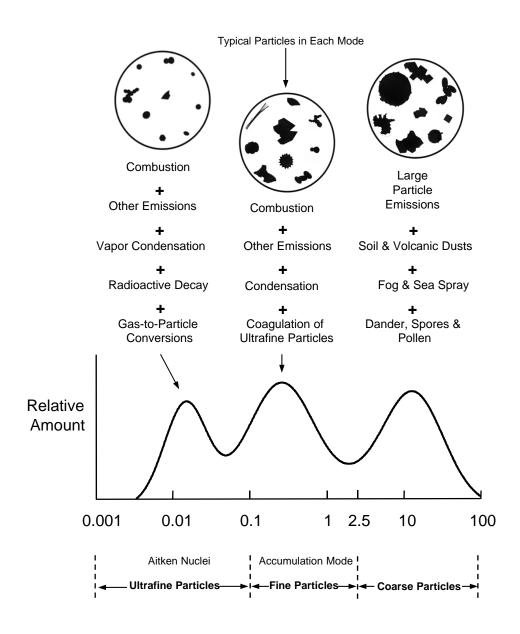
by

Robert F. Phalen, Ph.D., Professor
Department of Medicine, Center for
Occupational and Environmental Medicine
Co-Director: Air Pollution Health Effects Laboratory,
University of California, Irvine

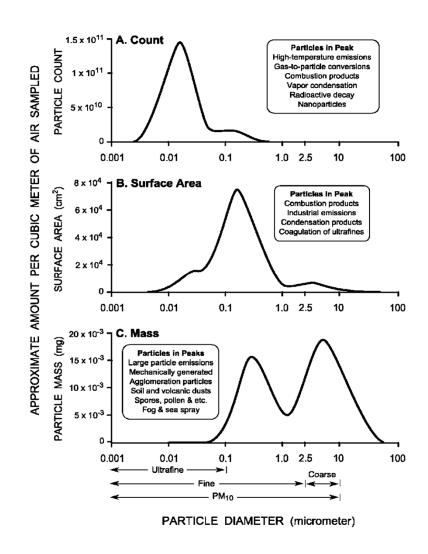
Sustainable Goods Movement: Maintaining the Environment, Economy and Equity

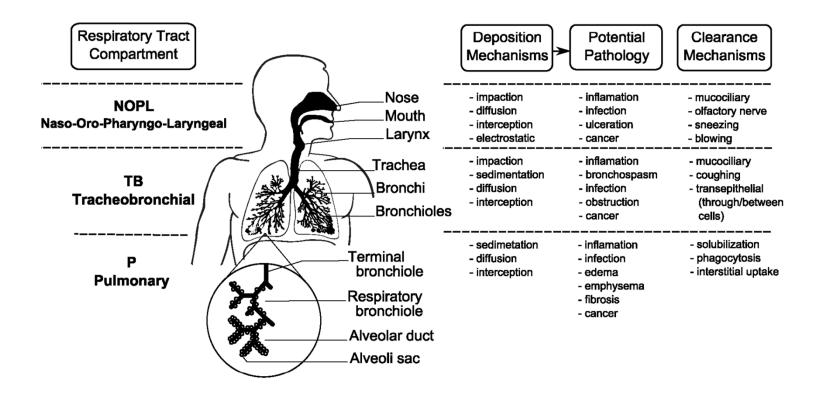
CSUSB Palm Desert Campus, Palm Desert, CA November 21-22, 2013 "All substances are poisons; There is none which is not a poison.

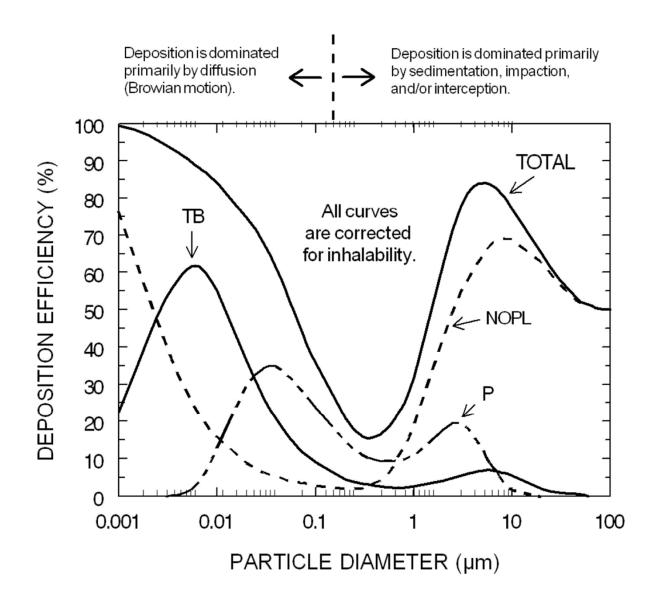

The right dose differentiates a poison from a remedy."


OUTLINE

- * ENVIRONMENTAL PARTICLES
- * THE HUMAN RESPIRATORY TRACT
- * DEPOSITION OF INHALED PARTICLES
- * U.S. EPA CRITERIA AIR POLLUTANTS
- * CALIFORNIA DIESEL EXHAUST DOSES
- * CALIFORNIA PM ISSUES
- * CONCLUDING REMARKS
- * REFERENCES


EM PHOTO OF PARTICLES IN IRVINE AIR


TROPOSPHERIC PARTICLES - SIMPLIFIED


TROPOSPHERIC AEROSOL USING THREE METRICS

THE RESPIRATORY TRACT

INHALED PARTICLE DEPOSITION.

NAAQS – NATIONAL AMBIENT AIR QUALITY STANDARDS

Pollutant	Type*	Standard	Averaging Time
Sulfur Dioxide	Primary	0.075 ppm	1 h
	Secondary	0.5 ppm	3 h
Nitrogen Dioxide	Primary	0.053 ppm	Annual
	Primary	0.1 ppm	1 h
Ozone	Primary	0.075 ppm	8 h
Carbon Monoxide	Primary	9 ppm	8 h
	Primary	35 ppm	1 h
Lead	Primary	$0.15 \ \mu g/m^3$	3 mo (rolling avg).
PM_{10}	Primary	$150 \mu g/m^3$	24 h
PM _{2.5}	Primary	$35 \mu g/m^3$	24 h
	Primary	$15 \mu g/m^3$	annual

^{*} Primary standards are intended to protect public health, and Secondary standards are set to protect public welfare (e.g. impacts on vegetation, crops, man-made materials, ecosystems, visibility, climate, etc). When the Secondary standard is the same as the Primary standard the Secondary standard is not listed. Source: http://epa.gov/air/criteria. html, (accessed 11/15/2013).

PM 2.5 DOSE CALCULATIONS - 1

- * Assume 24 hours of breathing at a low exertion level for 70 years at maximum EPA NAAQS (15µg/m³)
- * Estimate total inhaled dose to the Pulmonary Airways.
- * Total 70 year outdoor 24 hour/day dose = 1.8 grams
- * Total 70 year indoor & outdoor dose = 0.65 grams

PM 2.5 DOSE CALCULATIONS - 2

- * Total 70 year diesel dose in CA = 0.026 grams
- * Smoking 1 cigarette dose = 0.04 grams
- * CA diesel dose in 70 years = 0.65 cigarettes; i.e., 0.01 cigarettes/year.
- * The TWA for soot is 3 mg/m³ giving 0.026 grams in 2 days.
- * No non-infection related substance could be toxic at the average level of diesel PM exposure in CA.
- * The single lethal dose of strychnine sulfate = 0.14 grams

CALIFORNIA PM ISSUES - 1

- * U.S. EPA sets National Ambient Air Quality Standards (NAAQS).
- * CA has a dry climate, so soil dust PM 2.5 is about 1.7 to 3.5 μ g/m³.
- * PM is the only regulated air pollutant without chemical specification; mass is regulated.
- * PM 2.5 is mass (natural & anthropogenic) in particles under 2.5 μm diameter.
- * In CA total PM 2.5 is about $10 \mu g/m^3$ of air. Diesel combustion contributes about 0.4 to 0.6 $\mu g/m^3$ (Mahmud, et al., 2012)
- * Epidemiology studies of PM 2.5 in CA are largely negative, as opposed to some Eastern U.S. cities.

CALIFORNIA PM ISSUES - 2

- * Further restrictions on diesels could have only negligible impacts on PM 2.5 in CA.
- * CA has serious economic problems, which also have adverse health impacts.
- * Any risk assessment should be done on the risks of a decision (e.g., regulation), not a chemical (or substance).
- * CA should consider seeking a waiver to exempt the state from PM 2.5 NAAQS.

CONCLUSIONS

- * PM 2.5 in CA air is quite low.
- * Diesel exhaust is a small portion of PM 2.5 in CA.
- * Doses from inhaled diesel exhaust particles in CA are very small.
- * PM 2.5 in CA is less toxic than that in some Eastern U.S. cities.
- * Is it logical for CA to impose additional restrictions on diesel exhaust?

REFERENCES

- Jenkins, R.A., Guerin, M.R., and Tomkins, B.A., *The Chemistry of Environmental Tobacco Smoke*, 2nd Edn., Lewis Publishers, Boca Raton, FL, 2000.
- Mahmud, A., Hixson, M., and Kleeman, M.J., Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change, *Atmos. Chem. Phys. Discuss.*, 12: 5881-5901, 2012.
- Phalen, R.F., and Phalen, R.N., *Introduction to Air Pollution Science: A Public Health Perspective*, Jones & Bartlett, Burlington, MA, 2011.
- Phalen, R.F., *The Particulate Air Pollution Controversy*, Kluwer Academic Press, Boston, MA, 2002.
- Schictel, B.A., Pichford, M.L., and White, W.H., Comments on "Impact of California's Air Pollution Laws on Black Carbon and their Implications for Direct Radiative Forcing", by Bahadur et al., *Atmos. Environ.* 45:4116-4118, 2011.