UNIVERSITY OF CALIFORNIA

Los Angeles

Development and Critical Evaluation of Air Pollution Emissions Inventories Representing Industrial and Commercial Facilities: A Case Study of Wilmington, California

A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Environmental Science and Engineering

by

Todd Patrick Sax

2004

The dissertation of Todd Patrick Sax is approved.

al

Beate Ritz

Jody Freeman

d

William Hinds

Arthur Winer, Committee Chair

University of California, Los Angeles

2004

TABLE OF CONTENTS

			Page
Table	e of Co	ntents	iii
List o	f Figur	es	xi
List o	f Table	es la	xvii
Gloss	sary of	Symbols, Terms and Abbreviations	XX
Ackn	owledg	ements	xxvii
VITA			
ABSTRACT XX			
1.0	INTR	ODUCTION AND BACKGROUND	1
	1.1	Environmental Justice and Community Health Concerns	2
	1.2	Examples of Air Toxics Exposure Assessments	3
		1.2.1 National or Regional Assessments	4
		1.2.2 Sub-Regional Assessments	5
	1.3	ARB's Neighborhood Assessment Program	6
	1.4	Overview of the Wilmington Air Quality Study	7
	1.5	Emissions Inventories and Application to the Wilmington Air Quality Study	8
	1.6	Research Objectives	10

		1.6.1 Overall Objective	10
		1.6.2 Specific Objectives	10
	1.7	Synopsis of Methods and Study Organization	11
2.0	INVE	NTORY DEVELOPMENT	12
	2.1	Compiling a List of Facilities	12
	2.2	Collecting Inventory Databases	13
	2.3	Statewide Inventory Data Audit	17
	2.4	Facility Surveys	20
		2.4.1 Surveys: Neighborhood Sources	21
		2.4.2 Surveys: CEIDARS Facilities	23
		2.4.3 Surveys: Emissions Inventory Calculation Methodologies	24
	2.5	Compiling an Emissions Inventory for Industrial- Commercial Facilities	25
	2.6	Quality Control and Assurance (QA/QC)	28
3.0	INVE	NTORY SUMMARY AND COMPARISONS	30
	3.1	Inventory Characteristics	31
	3.2	Inventory Totals	35
	3.3	Statewide Inventory Accuracy	40

iv

		3.3.1	Comparing Statewide Inventories to On-Site Survey Inventories	40
		3.3.2	Comparing Statewide and Final Inventories	45
	3.4	Inven	tory Comparisons by Data Source	50
		3.4.1	AER Data Comparisons	50
		3.4.2	TRI Data Comparisons	52
	3.5	Conc	lusions	53
4.0	EVAI INVE	LUATIN	IG PETROLEUM REFINERY EMISSIONS ES	56
	4.1	Initial	Data Evaluation	58
		4.1.1	SCAQMD Hot Spots Data	59
		4.1.2	SCAQMD AER Data	61
		4.1.3	BAAQMD Inventories	62
		4.1.4	Conclusions Based Upon Initial Data Evaluation	62
	4.2	Emiss	sions Data Analysis	63
		4.2.1	Benzene Emissions from Refineries	63
		4.2.2	Formaldehyde Emissions from Refineries	65
		4.2.3	CrVI Emissions from Refineries	68
		4.2.4	Hydrogen Sulfide Emissions from Refineries	70
		4.2.5	1,3-Butadiene Emissions from Refineries	71

		4.2.6	Conclusions Based Upon Emissions Data Analysis	73
	4.3	Comp	paring Inventory Data Sources	73
	4.4	Facilit	ty-Total Potency-Weighted Emissions	78
	4.5	Case	Study – Process Heaters	80
	4.6	Discu	ssion and Recommendations	86
5.0	EVAL MOBI FACII	UATIN LE SO LITIES	IG THE IMPACT OF NEIGHBORHOOD AND URCES AT INDUSTRIAL-COMMERCIAL IN THE WAQS	90
	5.1	Inven	tory Category Definitions	91
	5.2	Evalu Sourc	ating the Contribution of Neighborhood and Mobile es at Industrial-Commercial Facilities	93
		5.2.1	Assessing the Contribution of Surveyed Neighborhood and Mobile DPM Sources to the Industrial-Commercial Inventory	94
		5.2.2	Analyzing the Spatial Allocation of Neighborhood and Mobile DPM Emissions Sources	99
	5.3	Extra	oolating On-Site Mobile Source Emissions	102
		5.3.1	Analysis of Surveyed Mobile Source DPM Inventories	104
		5.3.2	Identifying Non-Surveyed, Potential Mobile Source DPM Emitters	106
		5.3.3	Application of Monte Carlo Analysis Methods	109
		5.3.4	Monte Carlo Results	111

	5.4	Conclusions	113	
6.0	UNCI DPM	ERTAINTY ANALYSIS CASE STUDY: MOBILE SOURCE EMISSIONS AT FOUR FACILITIES IN WILMINGTON		
	6.1	Uncertainty Analysis Methods and Application to Case Study	117	
	6.2	Uncertainty in Off-Road Emissions Sources	119	
		6.2.1 Off-Road Engine Activity	120	
		6.2.1.1 Engine Characteristics	121	
		6.2.1.2 Engine Operational Activity	123	
		6.2.2 Off-Road Emission Factors	125	
	×	6.2.3 Uncertainty in Off-Road Emissions Estimates	129	
	6.3	Uncertainty in On-Road Emissions Sources	133	
		6.3.1 Vehicle Activity	134	
		6.3.2 Emission Factors: Heavy Duty Truck Idling	136	
		6.3.3 Emission Factors: Heavy Duty Truck Movement	137	
		6.3.4 Uncertainty in On-Road Emissions Estimates	140	
	6.4	Uncertainty in DPM Emissions at Case Study Facilities	144	
	6.5	Conclusions	146	
7.0	UNCE DISPI APPL	UNCERTAINTY ANALYSIS CASE STUDY: NEAR FIELD DISPERSION MODELING FOR REGULATORY		

vii

	7.1	Abstract		148
	7.2	Introd	luction	149
	7.3	Speci	al Monitoring Study – Modeling Analysis	152
	7.4	Mode	l Evaluation – Tracer Experiment at CE-CERT	162
	7.5	Concl	lusions	175
8.0 A CASE STU SCALE REG APPLICATIO		SE STI E REG ICATIO	JDY FOR ASSESSING UNCERTAINTY IN LOCAL- GULATORY AIR QUALITY MODELING DNS	179
	8.1	Abstra	act	179
	8.2	Introd	uction	180
	8.3	Applic Study	cation of Uncertainty Analysis Methods to Case	182
		8.3.1	Uncertainty in Emissions Characterization	183
		8.3.2	Uncertainty Due to Spatial and Temporal Allocation of Emissions	187
		8.3.3	Uncertainty Due to Model Parameters	190
		8.3.4	Uncertainty Due to Meteorology	191
		8.3.5	Monte Carlo Analysis to Estimate Model Uncertainty	193
	8.4	Resul	ts	194
	8.5	Comp	arison to Simplified Modeling Approaches	197
	8.6	Conclusions		197

9.0	POLI	CY IMPLICATIONS AND CONCLUSIONS 1		
	9.1	Major Findings		200
	9.2	Implic	ations for ARB Policies and Programs	206
		9.2.1	Implications for ARB's Statewide Emissions Inventory	207
		9.2.2	Implications for ARB's Hot Spots Program	210
		9.2.3	Implications for ARB's Neighborhood Assessment Program	211
		9.2.4	Implications for ARB's Environmental Justice Program	213
		9.2.5	Summary of Implications	216
	9.3	Recor and N	mmendations for Improving Emissions Inventories leighborhood Assessment Methodologies	217
10.0	APPE	NDICE	S	227
	10.1	Facilit	y Survey Forms	227
		10.1.1	Survey Form: Visited, No Emissions	227
		10.1.2	Survey Form: Facility Evaluation Form	228
		10.1.3	Survey Form: Coatings and Solvents	230
		10.1.4	Survey Form: Dry Cleaning Form	231
	10.1.5 Survey Form: Diesel Particulate Matter		Survey Form: Diesel Particulate Matter	233
	10.1.6 Survey Form: Gasoline Station			237

		10.1.7 Survey Form: Welding and Metal Manufacturing	238
		10.1.8 Survey Form: Metal Plating	240
		10.1.9 Survey Form: Unspecified Process	241
	10.2	Final Inventory Data Dictionary	242
11.0	REFERENCES		

ACKNOWLEDGEMENTS

Many different people provided assistance in the development of this project. Pete Campos, Darryl Burns, Narci Gonzalez, Raymond Asregadoo, Chris Halm, Johnnie Raymond, and Shobna Pandhoh conducted surveys under the direction of this project. Management of the Planning and Technical Support Division at the California Air Resources Board, including Bob Fletcher, Linda Murchison, Randy Pasek, Dale Shimp, and Michael Benjamin, provided guidance as well as staff time and funding to conduct this study. Staff of the South Coast Air Quality Management District, including Mike Nazemi, Tom Chico, Yi-Chia Chao, and Kyu-Kyu Remillard, provided access to both electronic and hardcopy facility files. Vincent Agusiegbe of the California Air Resources Board and Greg Solomon of the Bay Area Air Quality Management District provided guidance and assistance with refinery inventory evaluations. Vlad Isakov, Larry Larsen, and Beth Schwehr provided valuable general guidance on this project. Chapter 7 was co-authored by Vlad Isakov, Akula Venkatram, David Pankratz, James Heumann, and Dennis Fitz, and will be published in the Journal of the Air and Waste Management Association. Chapter 8 was co-authored by Vlad Isakov and is published in Atmospheric Environment. I would like to thank my doctoral committee, William Hinds, Beate Ritz, and Jody Freeman, and my committee chair, Arthur Winer.

VITA

May 9, 1971	Born, San Francisco, California
1993	B.A., The Environment, Economics and Politics Claremont McKenna College Claremont, CA
1995	M.S., Environmental Health Science School of Public Health University of California, Los Angeles
1995-2000	Environmental Engineer TRW Space and Electronics Group Redondo Beach, California
2000-present	Air Pollution Specialist California Air Resources Board Sacramento, California

PUBLICATIONS AND PRESENTATIONS

- Isakov, V., Sax, T., Venkatram, A., Pankratz, D., Heumann, J., Fitz, D., (2004). Near Field Dispersion Modeling for Regulatory Applications, Journal of the Air and Waste Management Association, in press.
- Sax, T., Isakov, V., (2003). A Case Study for Assessing Uncertainty in Local-Scale Regulatory Air Quality Modeling Applications, Atmospheric Environment 37(5) 3481-3489.
- Sax, T., Isakov, V., Sicat, M., (2003). Wilmington Air Quality Study: Emissions Inventory and Modeling for Neighborhood Assessment, Presented to the 96th Annual Air and Waste Management Association Conference and Exhibition, San Diego, California.
- Sax, T., Isakov V., (2003). Wilmington Air Quality Study: A Framework for Local Scale Uncertainty Assessment, Presented to the 96th Annual Air and Waste Management Association Conference and Exhibition, San Diego, California.
- Sax, T., Sicat, M., Isakov, V., (2003). Wilmington Air Quality Study: Emissions Inventory Development and Evaluation, Presented to the 12th Annual EPA Emissions Inventory Conference, San Diego, California.

ABSTRACT OF THE DISSERTATION

Development and Critical Evaluation of Air Pollution Emissions Inventories Representing Industrial and Commercial Facilities: A Case Study of Wilmington, California

by

Todd Patrick Sax Doctor of Environmental Science and Engineering University of California, Los Angeles, 2004 Professor Arthur Winer, Chair

This dissertation describes the development and evaluation of an emissions inventory representing industrial and commercial facilities within and surrounding the community of Wilmington in Los Angeles for the California Air Resources Board's (ARB) Wilmington Air Quality Study (WAQS). The WAQS, conducted as part of the ARB's Neighborhood Assessment Program (NAP), was designed to assess the performance of models used to estimate pollutant concentrations on refined spatial scales. Specific objectives of this dissertation included evaluating statewide emissions inventories for their ability to support spatially resolved modeling, assessing uncertainty in selected source categories,

xxix

and quantifying all diesel exhaust particulate matter (DPM) emissions at industrial-commercial facilities.

To develop an inventory, multiple local, state, and federal databases were collected. Inventory data were augmented by on-site surveys, and a final inventory was developed representing each facility. This inventory was compared to the statewide inventory; emissions estimates differed by as much as an order of magnitude from the statewide inventory in some cases. Statewide inventories did not appear to contain the most recently calculated or comprehensive emissions data representing most facilities in the WAQS domain.

DPM represented 70% of cancer-potency weighted emissions generated by industrial-commercial facilities in the WAQS domain. About 80% of these emissions were generated by on-site mobile sources identified by survey. Onsite mobile sources were not included in stationary source facility inventory reports, which complicated neighborhood-scale inventory development. Quantitative analysis suggested uncertainty in mobile source DPM estimates exceeded an order of magnitude.

To improve neighborhood assessments several recommendations were offered, including standardizing inventory methodologies, improving communication between local districts and ARB, balancing inventory specificity with desired modeling resolution, focusing local-scale inventories on limited pollutants, and communicating neighborhood assessment results on a relative basis. Until ARB inventory databases are improved, ARB's NAP will be significantly limited by uncertainty, spatial-allocation of emissions, and quality control issues in California's statewide inventory.