UNIVERSITY OF CALIFORNIA

Los Angeles

Ultrafine Particles and Freeways

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Environmental Health Sciences

by

Yifang Zhu

2003

This dissertation of Yifang Zhu is approved.

Binned

Steve Colome

hel h

Sheldon K. Friedlander

oines 9 m

John R. Froines

Arthur M. Winer

William C. Hinds, Committee Chair

University of California, Los Angeles

2003

TABLE OF CONTENTS

Dedication	Page
Table of Contents	iv
List of Figures	ix
List of Tables	xiii
Acknowledgements	xiv
VITA	xvi
Abstract	xviii
Chapter 1 Introduction	1
1.1 Ambient Particulate Matter	1
1.1.1 Physical Properties of ambient PM	1
1.1.2 Chemical Properties of ambient PM	4
1.1.3 Ultrafine Particles	6
1.2 Health Effect of Ultrafine Particles	7
1.2.1 Toxicological Studies	8
1.2.2 Epidemiology Studies	9
1.3 Vehicle Emitted Ultrafine Particles	9
1.3.1 Dynamometer Studies	11
1.3.1.1 Diesel-powered Vehicles	12
1.3.1.2 Gasoline Vehicles	14
1.3.2 Real-world Studies	15
1.4 Thesis Overview	16
1.4.1 Statement of the Problem	16

1.4.2	Objectives	18
1.4.3	Thesis layout	19
References		20

Chapter 2	Ultrafine Particles near the 405 freeway in summer 26
	(Reference: Yifang Zhu, William C. Hinds, Seongheon Kim
	and Constantinos Sioutas "Concentration and size
	distribution of ultrafine particles near a major highway",
	2002, J. of Air and Waste Management Association,
	52:1032-1042.)

Abstract	26
Introduction	26
Methods	27
Description of Sampling Site	27
Sampling and Instrumentation	28
Results and Discussion	28
Wind Effects	29
Traffic Effects	30
Change in Ultrafine Particle Size Distribution with Increasing Dis	tance
	31
Carbon Monoxide, Black Carbon, Particle Mass and Number	35
Conclusions	35
Acknowledgements	35
References	35

v

Chapter 3	Ultrafine Particles near the 710 freeway in summer 37
	(Reference: Yifang Zhu, William C. Hinds, Si Shen,
	Seongheon Kim and Constantinos Sioutas "Study of
	Ultrafine Particles near a Major Highway with Heavy-duty
	Diesel Traffic", 2002, Atmospheric Environment, 36: 4323-
	4335.)

Abstract	37
Introduction	37
Experimental	39
Description of Sampling Site	39
Sampling and Instrumentation	39
Results and Discussion	40
Wind Effects	40
Traffic Effects	42
Change in Ultrafine Particle Size Distribution with Increasing Dist	ance
	42
Carbon Monoxide, Black Carbon, Particle Mass and Number	46
Conclusions	47
Acknowledgements	47
References	47

vi

Chapter 4 Ultrafine Particles near the 405 and 710 freeways in winter
(Reference: Yifang Zhu, William C. Hinds, Si Shen and
Constantinos Sioutas "Seasonal Trends of Concentration
and Size Distribution of Ultrafine Particles near Major
Highways in Los Angeles", Accepted by Aerosol Science
and Technology, 2003.)

50

Abstract	50
Introduction	51
Experimental	54
Description of Sampling Site	54
Sampling and Instrumentation	57
Results and Discussion	59
Conclusions	75
References	75

Chapter 5	Predicting	g Ultrafine H	Particles near	freeways		78
	(Reference: Y	Yifang Zhu,	William C.	Hinds and	Constantinos	Sioutas
	"Predicting u	ltrafine partic	cles near free	ways", to be	submitted, 200	03.)
Abstract						78
Introduct	ion					79
Models						82
At	mospheric Dis	persion				83
Со	agulation		2.18			87
Сс	ondensation and	d Evaporation	n			89

Adsorption	91
Results and Discussion	92
Conclusion	111
References	112

Chapter 6	Summary and the Opportunity for Future Research	117
-----------	---	-----

LIST OF TABLES

Chapter 2

Table 1. Sampling dates and instruments used.	29
Table 2. Measured average concentrations at increasing distances from the	
freeway.	34
Chanter 3	
Table 1. Sampling dates, time nd instruments used.	40
Table 2. Measured average concentrations at increasing distances from the	
freeway.	46
Chapter 4	
Table 4.1. Sampling dates, time, sites and instruments used.	57
Table 4.2 Comparison of sampling conditions in summer and winter.	60

Chapter 5

Table 5.1. Ultrafine particle number concentrations in different size range	es at
different sampling locations near the 405 freeway.	100
Table 5.2 Sensitivity analysis of ultrafine particle number concentrations in diff	erent
size ranges at different sampling locations near the 405 freeway de	ie to
incomplete mixing	101
Table 5.3. PAH properties related to the condensation/evaporation model.	104
Table 5.4. PAH properties related to the adsorption model.	105
Table 5.5. Particle number concentration emission factors.	110

ACKNOWLEDGEMENTS

I sincerely acknowledge the following people who have contributed to my doctoral research. First, I would like to express my deepest appreciation to my advisor and mentor, Dr. Hinds. Without him, my graduate study could not have been such a most valuable and enjoyable learning experiences. Not only did he give me guidance on projects and freedom to explore new frontiers, but he also cares about my professional growth. I would also like to acknowledge my co-authors on three published papers that were used in this dissertation: Dr. Costas Sioutas, Dr. Seongheon Kim and Si Shen. Special thanks are due to Mr. William L. Livingston and his staff at Los Angeles National Cemetery for their cooperation. I would also like to thank Mr. Hyuntae Kim, Ms. Sara Firl for their assistance with the field measurements.

I also want to express my deepest love and appreciation to my parents. Their continuous support throughout the years of my education is what I will always remember. I also want to thank my dearest husband, Yuqing Zhang, for his unconditional support through my graduate studies.

In addition, I would like to acknowledge the Air and Waste Management Association. for chapter 2 (Journal of Air and Waste Management Association, 52:174-185) reprint permission and Elsevier for chapter 3 (Atmospheric Environment, 36:4323-4335) reprint permission. This work was supported by the Southern California Particle Center and Supersite: U.S. Environmental Protection Agency grant number R82735201, California Air Resources Board contract number 98-316, and the Southern California Environmental Health Center, National Institute of Environmental Health Sciences (NIEHS) Grant # 5 P30 ES07048-07.

VITA

March 31, 1974	Born, Beijing, China
1997	B. Eng. Environmental Engineering Tsinghua University, China
1999	M.S. in Environmental Science and Engineering, Kwangju Institute of Science and Technology, Korea
1999-2003	Staff Research Associate, Institute of Environmental Health University of California, Los Angeles
1999, 2002	Chancellor's Fellowship University of California, Los Angeles
2002	Samuel J. Tibbitts Fellowship University of California, Los Angeles

PUBLICATIONS AND PRESENTATIONS

William C. Hinds, Nola J. Kennedy, and Yifang Zhu, "An eight-channel, five-stage personal cascade impactor" American Association for Aerosol Research annual conference, 2001.

Peter A. Jaques, Bill Grant, Yifang Zhu, Jeffrey L. Ambs, Constantinos Sioutas, and Philip M. Fine "Field Evaluation Of The Differential Teom® Monitor By Comparison With Semi-continuous And Integrated Ambient Particulate Mass And Nitrate In Claremont, California" American Association for Aerosol Research annual conference, 2002.

Hyuntae Kim, Yifang Zhu, William C. Hinds and Ken W. Lee, "Experimental study of small cyclones as particle concentrators" 2002, *J. Aerosol Science* 33, 721-733.

Seongheon Kim, Si Shen, Yifang Zhu, William Hinds and Constantinos Sioutas "Size Distribution, Diurnal and Seasonal Trends of Ultrafine Particles in Source and Receptor Sites of the Los Angeles Basin", 2002, *J. of Air and Waste Management Association*, 52: 297-307.

Si Shen, Peter A. Jaques, Yifang Zhu, Michael D. Geller, and Constantinos Sioutas "Evaluation of the SMPS -APS as a continuous monitor for measuring PM_{2.5}, PM₁₀ and course (PM_{2.5-10}) concentrations", 2002, *Atmospheric Environment*, 36: 3939-3950.

Yifang Zhu, and Ken W. Lee, "Experimental study on small cyclones operating at high flowrates" 1999, *J. Aerosol Science*, 30, 1303-1315.

Yifang Zhu, M.C Kim, Ken W. Lee, O.P Chong, M. Kuhlman, "Design and evaluation of a novel double cyclone" 2001, *Aerosol Science and Technology*, 34, 373-380.

Yifang Zhu, William C. Hinds, Seongheon Kim and Constantinos Sioutas "Concentration and size distribution of ultrafine particles near a major highway", 2002, J. of Air and Waste Management Association, 52:1032-1042.

Yifang Zhu, William C. Hinds, Si Shen, Seongheon Kim and Constantinos Sioutas "Study of Ultrafine Particles near a Major Highway with Heavy-duty Diesel Traffic", 2002, *Atmospheric Environment*, 36: 4323-4335.

Yifang Zhu, William C. Hinds, Si Shen and Constantinos Sioutas "Seasonal Trends of Concentration and Size Distribution of Ultrafine Particles near Major Highways in Los Angeles", Accepted by *Aerosol Science and Technology*, 2003.

Yifang Zhu and William C. Hinds "Predicting Ultrafine Particles near Major Highways", Submitted to *Environmental Science and Technology*.

Yifang Zhu, William C. Hinds, H. T. Kim and K. W. Lee, "Numerical modeling of the performance of small virtual cyclones" American Association for Aerosol Research annual conference, 2002.

Yifang Zhu, William C. Hinds and Constantinos Sioutas, "Ultrafine particles near major highways in Los Angeles" Particulate Matter: Atmospheric Sciences, exposure and the fourth colloquium on PM and human health, Pittsburgh, March 2003.

ABSTRACT OF THE DISSERTATION

Ultrafine Particles and Freeways

by

Yifang Zhu

Doctor of Philosophy in Environmental Health Sciences

University of California, Los Angeles, 2003

Professor William C. Hinds, Chair

Ultrafine particles (diameter < 100 nm) have been suggested as a possible causative agent for the observed increases in mortality and morbidity with increases in particulate matter (PM) concentrations. Systematic measurements of the concentration and size distribution of ultrafine particles were conducted in the vicinity of Interstate 405 (mostly gasoline traffic) and Interstate 710 (heavy-duty diesel traffic) in Los Angeles during the summer, 2001 and the winter 2002. Measurements were taken at increasing distances downwind from each of the freeway. At each sampling location, concentrations of carbon monoxide (CO) and black carbon (BC) were also measured.

For the conditions of these measurements, relative concentration of CO, black carbon and particle number track each other well as one moves away from the freeway. Particle number concentration (6-220 nm) decreased exponentially with downwind distance from the freeway. The maximum number concentration that was observed near the freeway was about 25 time greater than that for the background location. It suggests that people, who live, work, or travel within 100 m downwind of major traffic sources, will have much higher ultrafine particle exposure than those who live farther away from such sources. The decay rates of CO and BC are slightly greater in summer than in winter for both freeways suggesting a weaker atmospheric dilution effect in winter. These data may be useful for epidemiological studies to estimate exposure to ultrafine particles in the vicinity of major highways and to evaluate their adverse health effects.

A mathematical model was developed to simulate ultrafine particle number concentrations and size distribution near freeways. The model predicts particle number concentration near freeways with more than 90% accuracy. There are significant discrepancies between the model predicted and measured ultrafine particle size distributions. Atmospheric dispersion was found to be the dominant mechanisms in determing the particle number concentration near freeways.

xix