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REVIEW ARTICLE

Do causal concentration–response functions exist? A critical review of
associational and causal relations between fine particulate matter and mortality

Louis Anthony (Tony) Cox Jr

Cox Associates, Denver, CO, USA

ABSTRACT
Concentration–response (C–R) functions relating concentrations of pollutants in ambient air to mortality
risks or other adverse health effects provide the basis for many public health risk assessments, benefits
estimates for clean air regulations, and recommendations for revisions to existing air quality standards.
The assumption that C–R functions relating levels of exposure and levels of response estimated from
historical data usefully predict how future changes in concentrations would change risks has seldom
been carefully tested. This paper critically reviews literature on C–R functions for fine particulate matter
(PM2.5) and mortality risks. We find that most of them describe historical associations rather than valid
causal models for predicting effects of interventions that change concentrations. The few papers that
explicitly attempt to model causality rely on unverified modeling assumptions, casting doubt on their
predictions about effects of interventions. A large literature on modern causal inference algorithms for
observational data has been little used in C–R modeling. Applying these methods to publicly available
data from Boston and the South Coast Air Quality Management District around Los Angeles shows that
C–R functions estimated for one do not hold for the other. Changes in month-specific PM2.5 concentra-
tions from one year to the next do not help to predict corresponding changes in average elderly mor-
tality rates in either location. Thus, the assumption that estimated C–R relations predict effects of
pollution-reducing interventions may not be true. Better causal modeling methods are needed to better
predict how reducing air pollution would affect public health.
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Introduction: causal vs. associational
concentration–response relations

A concentration–response (C–R) curve shows levels of adverse
health responses in exposed populations on its vertical axis
and levels of ambient concentrations of a pollutant on its
horizontal axis. Such curves, which are usually upward-slop-
ing, have been widely used to predict the public health
impacts of proposed reductions in air pollutants (Schwartz
et al. 2002; Pope et al. 2015). These predictions are made by
assuming that reducing air pollution will reduce adverse
health effects, moving both exposure and response variables
leftward and downward along the C–R curve. Thus, a C–R
curve is commonly given both of the following two
interpretations:

Associational interpretation. A C–R curve shows the esti-
mated response (R) for each estimated level of exposure con-
centration (C), based on historical data. The association
between C and R is typically described by a regression model.
Such a model may also include trends, season, weather, and
other variables, including co-pollutants (Schwartz et al. 2002).
We call this the associational interpretation of a C–R curve. It
describes C–R associations between levels of C and levels of
R in historical data. Common measures of C–R associations
include relative risk (RR), the regression coefficient for C as a
predictor of R, and quantities derived from them such as the
odds ratio (OR), population attributable risk, etiologic fraction,
or global burden of disease estimates.

Causal interpretation. The C–R curve shows what the esti-
mated response would become if the exposure concentration
were to be fixed at different levels. Thus, it also shows how
the response would change if concentration were changed.

As illustrated in detail in Table 1 later, these two interpre-
tations are usually conflated, leading to causal interpretations
of associations. For example, causal claims such as that “The
magnitude of the association suggests that controlling fine
particle pollution would result in thousands of fewer early
deaths per year” (Schwartz et al. 2002, emphases added) are
very common in the epidemiological literature on air pollu-
tion health effects, and in regulatory risk assessments based
on this literature, even though, as discussed next, there is no
necessary relation between the magnitude or direction of a
historical C–R association and the effects on R of reducing C.

In principle and in practice, there may be no single curve
satisfying both interpretations. For example, suppose that a
positive association were to be found between daily con-
sumption of aspirin and heart attack risk in an elderly popula-
tion, perhaps because elderly people at higher risk of heart
attacks are more likely to be prescribed an aspirin regimen to
reduce that risk. Clearly, such an empirical association
between exposure (or consumption) levels and risk levels
would imply nothing about how changing daily consumption
of aspirin would change future heart attack risks. The data
only address associations between historical levels, which do
not reveal the impacts of future changes. The historical asso-
ciation between their levels may be positive and the future
relationship between changes in their levels negative, so that
reducing aspirin consumption would increase risk, even
though historical levels of aspirin consumption and risk are

positively correlated. More generally, finding a positive C–R
association in historical data does not necessarily imply any-
thing about how changing C would change R. It is not gener-
ally true that if a C–R model describes past data values for
C and R, then it also predicts how changing exposure con-
centration from a current level to a new level will change the
average response.

Example: C–R associations do not necessarily provide
valid causal predictions

To illustrate, consider a simplified setting in which daily mor-
tality rate, R and average daily exposure concentration,
C have been measured for several years and the following
associational C–R model perfectly fits the data:

R ¼ Cþ 50 (Model 1: Associational C–R relation)

That is, each additional unit of exposure concentration is
associated with an additional unit of daily mortality, which on
these scales corresponds to a 2% increase above the zero-
exposure baseline mortality rate of 50. Do these data imply
or suggest that reducing C would reduce R? Not necessarily,
because an associational model does not necessarily repre-
sent causal mechanisms (McClellan 2016; Moolgavkar 2016).
Other variables may affect how or whether R changes when
C changes. For example, suppose that an unmeasured third
variable, T, such as minimum daily temperature, affects C and
R as described by the following structural equations:

C ¼ 50–0:5T; for 0 � T � 100

R ¼ 150–C–T; for 0 � C þ T � 150

(Model 2: Causal C–R relation)

These equations have the following explicit causal inter-
pretation: if the value of a variable on the right side of an
equation is changed, then the value of the dependent vari-
able on the left side will change to restore equality. Thus,
changes propagate from right to left through these equa-
tions. The causal C–R relation is then very simple: decreasing
C by one unit via an exogenous intervention would increase
R by one unit (since the two are negatively related, with a
C–R coefficient of �1 for the causal impact of changes in C
on changes in R). The associational C–R relation is simply
Model 1. (Solving the first equation for T (yielding T¼ 100 –
2C) and substituting into the second equation to eliminate
T yields the reduced-form C–R equation: R¼Cþ 50.) Model 1
correctly reveals that days with one unit less of C have histor-
ically been associated with one unit less of R (i.e. the two are
positively associated), even though Model 2 correctly reveals
that reducing C by one unit would increase R by one unit.
Thus, the causal and associational C–R relations are quite dif-
ferent. The associational model would be entirely valid for
predicting how many deaths would occur on days with differ-
ent exposure concentrations in the absence of interventions,
but only the causal model can be used to correctly predict
how changing C would change R. In reality, of course, many
C–R models include temperature, but other unmeasured,
unmodeled, or mis-modeled variables can drive wedges
between associational and causal C–R relations, so care
should be taken to distinguish between these potentially
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quite different interpretations of C–R relations. Such care has
not been widely exercised in the literature reviewed next.

The importance of distinguishing between association and
causation in interpreting C–R functions has recently been
emphasized in comments on estimated human health bene-
fits from reducing ambient concentrations of fine particulate
matter (PM2.5) air pollution (Cox 2016; Frey 2016; McClellan
2016; Moolgavkar 2016; North 2016; Smith 2016). As detailed
in Cox (2012), in studies that have been influential for esti-
mating quantitative public health benefits attributed to
PM2.5 reductions, the EPA has assumed a causal relation
between PM2.5 reductions and reductions in both acute and
chronic mortality for purposes of estimating health and eco-
nomic benefits, while acknowledging in technical appendices

that these causal assumptions are uncertain and are not
clearly established by epidemiological data. This paper seeks
to contribute to a sounder and less assumption-dependent
scientific basis for understanding the probable human health
consequences of changing pollution levels, by challenging
the common practice of treating association as if it were
causation for purposes of air pollution C–R modeling and by
drawing attention to different concepts of causation and to
less assumption-based methods for assessing causal impacts.

One specific purpose of this article is to critically review
how C–R functions have been developed and used in public
health risk assessments and risk management policy recom-
mendations, focusing on fine particulate matter (PM2.5)
and mortality risks as a prominent example. Because

Table 1. Examples of association and causation being conflated in the literature on PM2.5 health effects.

Interpretation in literature Comments

“We observed statistically significant and robust associations between air
pollution and mortality… these results suggest that fine-particulate air
pollution, or a more complex pollution mixture associated with fine par-
ticulate matter, contributes to excess mortality in certain U.S. cities.”
Dockery et al. (1993)

Associations do not suggest a contribution to excess mortality unless they
are causal.

“The magnitude of the association suggests that controlling fine particle
pollution would result in thousands of fewer early deaths per year.”
Schwartz et al. (2002)

Associations do not allow prediction of results from changes in exposure
concentrations unless the associations represent manipulative causal
relations.

“We examined the association between PM(2.5) and both all-cause and
specific-cause mortality… Our findings describe the magnitude of the
effect on all-cause and specific-cause mortality, the modifiers of this
association, and suggest that PM(2.5) may pose a public health risk
even at or below current ambient levels.” Franklin et al. (2006)

An association with mortality is not an effect on mortality. A C–R associ-
ation does not suggest that exposure poses a public health risk, unless
the association is causal.

“Residential ambient air pollution exposures were associated with mortal-
ity… our study is the first to assess the effects of multiple air pollu-
tants on mortality with fine control for occupation within workers from
a single industry.” Hart et al. (2011)

Associations with mortality are not effects on mortality.

“Each increase in PM2.5 (10lg/m3) was associated with an adjusted
increased risk of all-cause mortality (PM2.5 average on previous year) of
14%… These results suggest that further public policy efforts that
reduce fine particulate matter air pollution are likely to have continuing
public health benefits.” Lepeule et al. (2012)

Associations do not suggest that public policy efforts that reduce exposure
are likely to create public health benefits unless the associations reflect
manipulative causation.

“Ground-level ozone (O3) and fine particulate matter (PM2.5) are associ-
ated with increased risk of mortality. We quantify the burden of mod-
eled 2005 concentrations of O3 and PM2.5 on health in the United
States. …Among populations aged 65–99, we estimate nearly 1.1 mil-
lion life years lost from PM2.5 exposure… Among the 10 most populous
counties, the percentage of deaths attributable to PM2.5 and ozone
ranges from 3.5% in San Jose to10% in Los Angeles. These results show
that despite significant improvements in air quality in recent decades,
recent levels of PM2.5 and ozone still pose a nontrivial risk to public
health.” Fann et al. (2012)

In the absence of manipulative causation, statistical associations between
pollutant levels and mortality risks do not quantify effects caused by
exposure on burden of disease or on life-years lost or on deaths, nor
do they indicate a risk to public health.

“Ambient fine particulate matter (PM2.5) has a large and well-documented
global burden of disease. Our analysis uses high-resolution (10 km, glo-
bal-coverage) concentration data and cause-specific integrated exposure-
response (IER) functions developed for the Global Burden of Disease 2010
to assess how regional and global improvements in ambient air quality
could reduce attributable mortality from PM2.5. Overall, an aggressive
global program of PM2.5 mitigation in line with WHO interim guidelines
could avoid 750 000 (23%) of the 3.2 million deaths per year currently
(ca. 2010) attributable to ambient PM2.5.” Apte et al. (2015)

The Global Burden of Disease IER functions are based on relative risk
measures of association. They do not allow prediction or assessment of
“how… improvements on ambient air quality could reduce attributable
mortality” or avoid deaths unless the underlying relative risks represent
(manipulative) causal relations.

“We use a high-resolution global atmospheric chemistry model combined
with epidemiological concentration response functions to investigate pre-
mature mortality attributable to PM2.5 in adults �30 years and children
<5 years. … [A]pplying worldwide the EU annual mean standard of
25 lg/m(3) for PM2.5 could reduce global premature mortality due to
PM2.5 exposure by 17%…Our results reflect the need to adopt stricter
limits for annual mean PM2.5 levels globally… to substantially reduce
premature mortality in most of the world.” Giannadaki et al. (2016)

Epidemiological exposure concentration-response associations and esti-
mates of PM2.5-attributable mortalities based on them do not imply
that reducing PM2.5 would reduce mortality, or allow such reductions
to be predicted, unless the associations represent manipulative causal
relations.

“Relative risks were derived from a previously developed exposure-response
model. …Nationally, the population attributable mortality fraction of
PM2.5 for the four disease causes was 18.6% (95% CI, 16.9–20.3%).
…Aggressive and multisectorial intervention strategies are urgently
needed to bring down the impact of air pollution on environment and
health.” Lo et al. (2016)

Relative risks and population attributable mortality fractions are measures
of exposure-response associations. Such associations do not imply that
interventions to reduce exposures would reduce risks of adverse
responses unless there is a manipulative causal relation between them.

CRITICAL REVIEWS IN TOXICOLOGY 3



interpretation of C–R functions for purposes of risk manage-
ment decision-making is typically based on consideration of
the wider context provided by multiple studies, rather than
relying on analyses of any single data set, we focus on pat-
terns of data analysis and causal interpretation that are
prevalent across multiple studies. A second purpose of this
article is to examine the extent to which associational C–R
curves estimated from publicly available data permit accurate
prediction of changes in R based on changes in C. To this
end, we examine available data for the Boston and Los
Angeles areas, recently identified in C–R studies as locations
where further reducing PM2.5 concentrations is predicted to
create substantial health benefits (Cromar et al. 2016;
Schwartz et al. 2017). A third purpose of this paper is to
examine how well C–R relations estimated for elderly people
in Boston apply across the continent in Los Angeles. Finding
the same C–R curve in such different geographic areas might
suggest that it represents a predictively useful causal relation.
Conversely, finding that different C–R curves hold in different
locations or at different times in the same location would be
evidence to the contrary.

The remainder of this paper is organized around these
three purposes. The following section first examines how C–R
functions have been developed and used in the epidemio-
logical literature attributing adverse health effects to fine par-
ticulate matter. It critically discusses methods used in this
literature to draw causal inferences and compares them to
other methods for causal inference – what we call informa-
tion-based methods – developed over the past century in gen-
etics, engineering, economics and econometrics, statistics,
systems biology, physics, computer science and artificial intel-
ligence, machine learning, and other fields (Pearl 2009a). The
next section applies these information-based causal inference
methods to two publicly available data sets for PM2.5 and
elderly mortality in the Northeast (Boston) and Southwest
(Los Angeles air basin) and compares the results to each
other and to results from associational (regression) modeling.
Finally, we discuss limitations of the illustrative results pre-
sented and the information-based methods reviewed and
acknowledge their rich and deep grounding and intellectual
history. We conclude that current methods of information-
based causal analysis used in other fields can provide a valu-
able complement to other techniques used in air pollution
epidemiology. Applying them suggests that causal C–R func-
tions, as they are usually described, understood, and applied,
may not exist. Rather, published C–R functions quantify statis-
tical associations that do not necessarily predict correctly
how changing exposure concentrations would affect risk of
adverse health responses. To better achieve this predictive
goal, information-based methods can be used to address
aspects of causality that are not well addressed by associ-
ational and potential outcomes methods.

Critical review and synthesis of literature on C–R
relationships for PM2.5

Many papers have applied estimated C–R regression relation-
ships to quantify human health risks associated with fine par-
ticulate matter (PM2.5) and to project human health benefits

from further reducing ambient PM2.5 levels. Various criticisms
of statistical uncertainties, limitations, and biases in C–R
regression estimates have been offered (e.g. Young & Xia
2013; Krsti�c et al. 2016). The following paragraphs refer to
selected papers, including recent ones and ones frequently
cited in regulatory risk assessments, to illustrate the following
key themes:

1. Associational and causal C–R functions have commonly
been conflated in the literature, usually without explicit
discussion or careful consideration of what causation
means (Maldonado 2013).

2. There are many possible non-causal explanations for
reported positive C–R associations. These are usually not
systematically addressed using appropriate methods
such as multiple-bias analysis (Greenland 2005).

3. Recent attempts to address causality for PM2.5 and mor-
tality have relied on modeling assumptions of unknown
validity, such as that no omitted confounders are pre-
sent. They leave unaddressed other crucial assumptions,
such as that individuals with different exposures are
otherwise exchangeable, or that individual-level and
population-level causation are consistent (Maldonado
2013).

4. Modern information-based algorithms for causal infer-
ence can be applied to PM2.5 health effects data,
although few studies have yet done so.

Many important past papers equate associational and
causal C–R relations

Current risk assessments, benefits assessments, and recom-
mendations for revising standards for criteria pollutants build
on a decades-old scientific literature that routinely makes the
following three implicit assumptions:

a. Associational and causal C–R functions can be modeled
by the same curve (Pope et al. 2002);

b. This C–R curve can be estimated quantitatively from rele-
vant data via regression models or other associational
methods such as odds ratios, relative risks, attributable
risks, and burden of disease estimates, perhaps aug-
mented with human judgments based on the Sir Austin
Bradford Hill considerations (Hill 1965) or other weight-
of-evidence considerations (Fedak et al. 2015) such as
the strength, consistency, temporality, and biological
plausibility of associations.

c. C–R regression coefficients or other associational meas-
ures estimated from one set of locations and times can
be applied to exposure concentrations for other loca-
tions and times to estimate excess mortalities caused by
air pollution and the potential human health benefits
that would be caused by reducing it (e.g. Chen et al.
2013).

Table 1 gives examples of statements from articles that
make one or more of these assumptions. Examples of associ-
ational and causal language are italicized (all emphases
added). Brief comments in the right column note where
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stated causal interpretations do not follow from the associa-
tions presented. These articles include many that have been
cited by EPA and others in deliberations on PM2.5 risks and
regulations in recent decades, continuing up to the present.

Such examples can be multiplied many-fold. Published
papers on health effects attributed to pollutants typically
move freely between associational and causal interpretations
of C–R associations. They routinely present positive C–R asso-
ciations as implying or suggesting that reducing air pollution
would improve public health. But this is true only if the C–R
associations are in fact causal – more specifically, only if they
describe manipulative causality (Woodward 2013), as opposed
to associational or counterfactual or predictive causation;
these concepts are reviewed later. None of these papers
establishes that the presented C–R associations do in fact
describe (manipulative) causation, so none is suitable for pre-
dicting the effects on R of changing C by reducing air pollu-
tion. Of course, even if many published causal conclusions do
not follow from their stated associational premises, this does
not necessarily imply that either the premises or the conclu-
sions are mistaken. It only implies that the methods used to
draw causal conclusions are not reliable, They cannot be
depended on to yield correct conclusions and may even yield
contradictory results in the hands of different investigators
(Glaeser 2006; Dominici et al. 2014), although they might also
yield correct conclusions on some important occasions, as in
the example of cigarette-smoking and lung cancer.

There are many potential non-causal explanations for
positive C–R associations

If most positive C–R associations – or at least those satisfying
commonly discussed weight-of-evidence considerations such
as strength, consistency, specificity, temporality, and bio-
logical plausibility (Hill 1965; H€ofler 2005; Fedak et al. 2015) –
were in fact usually causal, then the distinction between asso-
ciational and causal C–R relations might be of little more
than academic interest. But there are many possible non-
causal explanations for such C–R associations. Depending on
the details of the study design used, non-causal C–R associa-
tions can arise for any of the following reasons.

� Coincident historical trends. Both C and R might be falling
over time, but not because either causes the other. An
example is a study of mortality risks before and after
coal burning bans (Clancy et al. 2002) discussed later.
Non-stationary time series (e.g. statistically independent
random walks) often exhibit significant correlations in the
absence of causation because they each independently
tend to have trends over any interval of observation. To
the extent that they are all correlated with time, they
tend to be correlated with each other – the problem
known as “spurious regression” (e.g. Yule 1926). “History,”
meaning trends or events that cause effects to change
following interventions, but not because of the interven-
tions, has been recognized and controlled for as one of
the standard “threats to internal validity” of causal infer-
ences in social statistics and quasi-experimental studies
since the 1960s (Shadish et al. 2002). These ideas have

had limited, but useful, impact on improving causal infer-
ence in health risk research (Slack & Draugalis 2001).

� Omitted confounders. Many data sets that identify positive
C–R associations do not include potential socioeconomic
confounders such as income, education, and occupation
of those exposed, or societal factors such as stress and
behavioral and societal factors (Valberg 2003), or time-
varying confounders such as wind speed (Morabito et al.
2014; Urban & Kysel�y 2014) or winter colds and flus. Such
unmeasured variables might exert far larger effects on
mortality than environmental exposures and differ sys-
tematically between more- and less-exposed areas.

� Residual confounding. This arises when a confounding
variable is incompletely controlled for, e.g. by using dis-
crete levels of a continuous confounding variable such as
age or temperature, which allows for exposure and
response variables to remain confounded within the dis-
crete levels; or by using relatively stiff splines or inflexible
linear parametric models to partially control for continu-
ous variables such as recent daily temperatures. For
example, Wang et al. (2016) note that “Many studies have
reported the associations between long-term exposure to
PM2.5 and increased risk of death. However, to our know-
ledge, none has used a causal modeling approach or
controlled for long-term temperature exposure, and few
have used a general population sample.” To address
these gaps, they explain that “We estimated the causal
effects of long-term PM2.5 exposure on mortality and
tested the effect modifications by seasonal temperatures,
census tract–level socioeconomic variables, and county-
level health conditions… Specifically, we estimated the
association between long-term exposure to PM2.5 and
mortality while controlling for geographical differences
using dummy variables for each census tract in New
Jersey, a state-wide time trend using dummy variables for
each year from 2004 to 2009, and mean summer and win-
ter temperatures for each tract in each year” (emphases
added). In addition to the usual problem of conflating
“we estimated the causal effects” with “we estimated the
association,” using a single dummy variable for each year
and mean summer and winter temperatures leaves room
for substantial residual confounding of exposure-response
relations by time and by temperature variations within
the summer and winter seasons.

� Modeling biases, including biases from omitted variables,
omitted error terms or classification error probabilities for
predictors, biases in data selection or coding, model form
selection biases, and model functional form specification
errors, provide other well-known non-causal sources of
association. They are sometimes addressed via “multiple-
bias modeling” (Greenland 2005; H€ofler et al. 2007). They
can greatly affect conclusions. As illustrated in our
example with Models 1 and 2, different choices about
which predictors to include on the right side of a regres-
sion model can change the sign, as well as the magni-
tude, of the C–R regression coefficient. Such findings
have led some prominent researchers to conclude that
“There is a growing consensus in economics, political sci-
ence, statistics, and other fields that the associational or

CRITICAL REVIEWS IN TOXICOLOGY 5



regression approach to inferring causal relations – on the
basis of adjustment with observable confounders – is
unreliable in many settings” (Dominici et al. 2014).
Sources of modeling bias can also interact in subtler
ways. For example, suppose that mortality rate and
exposure concentration depend only on temperature, but
not on each other, via the following structural equations:

mortality rate ¼ 100�ð0:1� temperatureÞ2
concentration ¼ 100�temperature; for 0< temperature< 100:

� If a large data set is created by sampling temperature val-
ues from the interval from 0� to 100�, with each observed
value of temperature and concentration differing from its
true value by a small random error independently and
identically uniformly distributed between �2 and 2, then
fitting a linear regression model for mortality rate as a
function of observed concentration and temperature will
show that mortality rate is significantly associated only
with concentration, and not with temperature, even
though by construction mortality rate depends only on
temperature, and not on concentration. Fitting a mis-
specified (linear) regression model yields a statistically
significant C–R regression coefficient in the absence of a
causal relation. Of course, in this simple example, regres-
sion diagnostics (e.g. plotting the data and residuals)
would reveal the need for a nonlinear (quadratic) term
rather than a linear term for temperature, allowing the
incorrect conclusions to be avoided. But for the large and
complex epidemiological models commonly used in prac-
tice, regression diagnostics and multiple-bias analyses
that would allow effects of model specification errors and
omitted errors-in-variables to be corrected are often not
presented, potentially allowing modeling biases to affect
results in unquantified ways (Greenland 2005).

Some of these possible non-causal explanations are some-
times mentioned in papers reporting positive C–R associa-
tions. However, they are seldom systematically listed and
refuted by data, leaving readers uncertain about whether
reported associations reflect reliable truths about the world
or are only artifacts of modeling choices (Greenland 2005;
Glaeser 2006; Dominici et al. 2014).

That potential non-causal explanations for C–R associations
occur commonly in practice makes it important to report
model diagnostics and to address such rival explanations
before interpreting reported C–R associations as having
causal significance or policy relevance (Greenland 2005).Yet,
influential papers such as those in Table 1 often do little
more than argue that smoking or selection biases are unlikely
to explain the full C–R association before presenting a causal
interpretation and urging policy-relevant recommendations
based on it.

Recent papers draw causal conclusions from
observational data by making unverified assumptions

Encouragingly, the more recent literature has started to
address the question of causation more explicitly. This is

most often done by introducing unverified modeling assump-
tions to justify interpreting regression coefficients, associa-
tions, and differences of means or proportions as if they were
measures of causal impacts. The following types of studies
and modeling assumptions have been used to support
important causal claims about C–R associations for PM2.5 and
mortality.

� Intervention studies, such as a widely cited study of effects
on mortality risks of coal burning bans in Dublin County,
Ireland (Clancy et al. 2002), assume that if health risks
change following an intervention, then the change is
caused by the intervention. This assumption was tested a
decade after the original Dublin study in an updated
study that compared mortality rates in areas affected and
not affected by the bans (Dockery et al. 2013). In contrast
to the original study, which had been used to justify pol-
icy decisions to extend coal-burning bans in Ireland
based on a much-publicized belief that cleaner air had
been found to cause reduced mortality, the updated
study using control groups concluded that the bans had
produced no detectable reductions in total or cardiovas-
cular mortality rates (Dockery et al. 2013). As explained
by Zigler and Dominici (2014), “However, even when
studying an abrupt action, threats to causal validity can
arise, as illustrated in extended analyses of the Dublin
coal ban that revealed that long-term trends in cardiovas-
cular health spanning implementation of the ban – not
the coal ban itself – contributed to apparent effects on
cardiovascular mortality.” Since the 1960s, the “one-group
pretest-posttest design” used in the original study has
been identified by social statisticians as inappropriate for
causal inferences, since it leaves uncontrolled the threat
of coincident historical change, as well as other threats to
valid causal inference (Campbell & Stanley 1963, p. 7). By
contrast, a pretest–posttest control group design is
appropriate for causal inference (ibid; Rich 2017). It can
show that a large reduction in particulate pollution had
no detectable effect on total mortality, as in Dublin, if
that is the case; or it can provide strong evidence that
high pollution levels cause excess mortalities if mortality
rate spikes where and when air pollution spikes – such as
in Donora in 1948, or London in 1952 – but not other-
wise, e.g. in the same cities and months a year earlier or
later than the high pollution episode, or in other cities
with similar temperatures, humidity, influenza rates, etc.
but without the high air pollution.

� Instrumental variable (IV) studies assume that a variable
(called an “instrument”) directly affects exposure but not
response and is itself unaffected by unmeasured con-
founders (Baiocchi et al. 2014). Variation in response due
to the variation of the instrument can then be used to
estimate the effect on responses of the changes in expos-
ure associated with variations in the instrument, without
any effects from unmeasured confounders. For example,
Schwartz et al. (2017) noted that “While many time series
studies have established associations of daily pollution
variations with daily deaths,” most of these associations
have been found at relatively high exposure
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concentrations, and “causal modeling approaches are also
lacking.” To address this lack, they developed an IV
approach that “combined height of the planetary bound-
ary layer and wind speed, which impact concentrations of
local emissions, to develop the instrument for PM2.5, BC,
or NO2 variations that were independent of year, month,
and temperature.” They “conclude that there is a causal
association of local air pollution with daily deaths at con-
centrations below EPA standards. The estimated attribut-
able risk in Boston exceeded 1800 deaths during the study
period, indicating important public health benefits can fol-
low from further control efforts.” However, the conclusions
of such IV analyses depend on the validity of the assump-
tions that the instrument affects exposure but not
response, and that it is unaffected by omitted confound-
ers. Whether these assumptions are valid is usually
unknown. As noted by O’Malley (2012), “IV analyses make
strong assumptions that cannot be conclusively tested by
the data” and different modeling choices, e.g. about how
to treat lagged values, can yield very different results.
Schwartz et al. (2017) assume that their instrument “is
unlikely to be correlated with other causes of death,” but
the validity of this assumption is unknown, especially since
wind speed, a component of the instrument, has recently
been found to be correlated with cardiovascular mortality
(Urban & Kysel�y 2014), elderly mortality (Morabito et al.
2014), and stroke symptom onset (Kim et al. 2016).

� Regression discontinuity designs (RDDs) assume that if
exposures and effects are significantly different for peo-
ple with values of some characteristic (such as age) above
vs. below an arbitrary threshold (such as an age threshold
for legal drinking), then the difference in effects is caused
by the difference in exposures, rather than by other dif-
ferences. This assumption will be mistaken if the differ-
ence in effects is instead caused by other differences
between people above and below the threshold (as
might happen if the legal drinking age is also the legal
age threshold for other activities such as gambling, smok-
ing, driving without supervision, employment in certain
occupations, and so forth). In air pollution health effects
research, RDDs have been used to attribute differences in
life expectancies between people living north and south
of a river to differences in air pollution rather than to
other regional differences in exercise or other variables,
but this attribution remains an untested assumption
(Chen et al. 2013). RDDs typically yield biased effects esti-
mates unless the functional form of the C–R relationship
is correctly specified.

� Counterfactual and potential outcome models, including
difference-in-differences models, assume that differences
between observed responses to observed exposure con-
centrations and unobserved model-predicted responses
to “counterfactual” exposure concentrations are caused
by the differences between the observed and counterfac-
tual exposures, rather than by errors in the model or by
systematic differences in other factors such as distribu-
tions of income, location, and age between the more-
and less-exposed individuals. For example, Wang et al.

(2016) assume that death count (the potential outcome)
depends on predictors via the parametric model

ln E Ya
c;t

� �� �¼ b0þ b1aþ b2Zcþ b3Ut þ b4Wc;t þ ln Pcð Þ
where

� Yac,t ¼ number of deaths that would occur in the popula-
tion of census tract c were it exposed to a in year t;

� Zc represents spatial confounders that vary among census
tracts but not over the time period of the study;

� Ut represents confounders that vary over time but not
among census tracts;

� Wc,t represents confounders that vary over time and
among census tracts, and

� ln(Pc) is the natural log of the population in census
tract c.

If the assumed additive form of the right side is correct,
then the change in deaths from one year to the next within
a census tract should depend only on time-varying terms,
and the difference in these changes (i.e. the “difference in dif-
ferences”) in deaths across census tracts should depend only
on factors such as exposure that differ over time
and between census tracts. Assuming that these differences-
in-differences are caused only by differences in exposures,
the authors conclude that “Under the assumption of the dif-
ference-in-differences approach, we identified a causal effect
of long-term PM2.5 exposure on mortality that was modified
by seasonal temperatures and ecological socioeconomic sta-
tus.” But the validity of the model assumptions is unknown.
Counterfactual causality is based on estimating what would
have happened had exposure conditions been different. Since
what would have happened is not observed, models are used
to guess at what would have happened; if these guesses are
wrong, then their causal conclusions may be wrong. In com-
petitive evaluations (Hill 2016), potential outcomes methods
exhibit 20-fold greater errors and biases than other methods
of causal analysis, as discussed below, reflecting the fact
that they are sensitive to models of unknown validity.

Commendably, such limitations have been meticulously
noted in some recent papers advocating and applying poten-
tial outcome methods. For example, Zigler et al. (2012) state
that “Our analysis of the CAAA estimated that 1991 nonat-
tainment designations for PM10 did causally reduce Medicare
mortality in 2001, and that there are important causal path-
ways through which this effect occurred without affecting
average ambient concentrations of PM10 or O3 during
1999–2001. …Our results are predicated on the belief
that after adjusting for demographic characteristics in
2000–2001… and preregulation pollution levels, there are no
unmeasured factors relevant to air quality and mortality that
differ systematically between attainment and nonattainment
areas. … Furthermore, we used a relatively restrictive (exponen-
tial) spatial decay function that was indexed by a single par-
ameter, but more flexible (e.g. anisotropic) spatial covariance
functions could provide better fit to pollution data and
should be explored” (emphases added). More recently, Zigler
et al. (2016) concluded on the basis of potential outcomes
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modeling that “all-cause Medicare mortality and respiratory-
related hospitalization rates were causally reduced in areas
designated as nonattainment for PM10 during 1990–1995
compared with the rates that would have occurred without
the designation,” but then responsibly noted that “a key limi-
tation of our analysis is the fact that we estimated the effect
of the nonattainment designation by regarding all monitoring
locations in a nonattainment area as ‘treated’ However, non-
attainment designations… sometimes resulted in no action
at all. … [In addition, the] prospect of unmeasured con-
founding remained a threat to the validity of our results.”
Such expositions deserve credit for highlighting the fact that
the conclusions reached are not necessarily valid, insofar as
they depend on assumptions that are not necessarily correct.

Crucial assumptions, such as that unmeasured confound-
ing does not invalidate the conclusions, are usually left
untested in the counterfactual/potential outcomes approach,
and many of its ablest practitioners suggest that they are
inherently untestable. Thus, for example, Petersen and van
der Laan (2014) write that “In sum, the flexibility of a struc-
tural causal model allows us to avoid many (although not
all) unsubstantiated assumptions and thus facilitates specifi-
cation of a causal model that describes the true data-gen-
erating process. Alternative causal models differ in their
assumptions about the nature of causality and make fewer
untestable assumptions. … [A] formal causal framework
can provide a tool for defining a statistical estimation prob-
lem that comes as close as possible to addressing the
motivating scientific question, given the data and know-
ledge currently available, while remaining transparent
regarding the additional assumptions required to endow
the resulting estimate with a causal interpretation.” Clearly
stating the untested assumptions (called “convenience-
based assumptions” by Petersen and van der Laan, and dis-
tinguished by them from “real knowledge”) that have been
used to draw causal conclusions from observational data is
certainly an admirable part of the program of counterfac-
tual and potential outcomes causal research. However, the
net result is that causal inferences and effects estimates in
this framework are no more certain than the untested
assumptions that support them. In practice, the approach
often ends up interpreting associations predicted from
regression models as if they were causal, while making
(and explicitly stating) the convenience-based assumptions
needed to warrant such an interpretation. This leaves open
the practical question of whether the assumptions and
causal conclusions are valid.

� Predictive causality methods assume that if exposure helps
to predict a response, then exposure might be a cause of
response. For example, Granger causality between an
exposure and a response time series (Kleinberg &
Hripcsak 2011) relies on the idea that causes help to pre-
dict their effects. Technically, variable X is a Granger-
cause of variable Y if the future of Y is not conditionally
independent of the history of X, given the history of Y.
Thus, nicotine-stained fingers can be a Granger cause of
lung cancer, helping to predict it, even if cleaning one’s
fingers would have no effect on future lung cancer risk; a

predictive cause need not be a manipulative cause.
Granger causality does not protect against causal associa-
tions from omitted confounders, nor does predictive
causality have any necessary implications for manipula-
tive causality. These points are often ignored or misun-
derstood in recent epidemiology papers. For example,
Schwartz et al. (2017) state that that “We also used
Granger causality to assess whether omitted variable con-
founding existed… Granger causality… argues that
omitted covariates that are correlated with time varying
exposure and outcome are as likely to be correlated with
tomorrow’s exposure as yesterday’s exposure.” This is nei-
ther a correct description of Granger causality, nor a valid
test for omitted confounders. For example, consider a
time series in which cold snaps occur only rarely, and for
a single day at a time; people then turn on their heaters
and PM2.5 concentrations spike on the day of the cold
snap and the following day; flu-like symptoms occur one
day later (i.e. 2 days after the cold snap day); and finally
both temperature and PM2.5 then return to their usual
distribution of values. If PM2.5 and flu-like symptoms are
measured and cold snaps are an omitted covariate, there
would be no justification for assuming that cold snaps
“are as likely to be correlated with tomorrow’s exposure
[i.e. PM2.5 on the day after flu-like symptoms are
observed] as yesterday’s exposure [i.e. PM2.5 on the day
before flu-like symptoms are observed].” To the contrary,
occurrence of cold snaps could be perfectly correlated
with yesterday’s spikes in PM2.5 and yet have no correl-
ation with tomorrow’s random values of PM2.5. Even if
Granger causality had been correctly established, the
Schwartz et al. (2017) conclusion “that there is a causal
association of local air pollution with daily deaths at con-
centrations below EPA standards… indicating important
public health benefits can follow from further control
efforts” would not follow: finding a causal association
based on Granger causality or IV logically has no neces-
sary implications for effects of control efforts, because
such causal associations do not necessarily reflect
manipulative causality (Woodward 2013). Just as showing
that nicotine-stained fingers help to predict lung cancer
would not imply that cleaning fingers would reduce risk
of lung cancer, so showing that polluted air is a Granger-
cause of mortality would not imply that cleaning air
would reduce risk of mortality.

� Attributable risk and burden-of-disease studies, as previ-
ously discussed, assume that if responses are greater
among people with higher exposures, then this difference
is caused by the difference in exposures, and could be
reduced by reducing it. Typically, this assumption is
made without any careful justification: it simply confuses
association with causation. Examples are widespread, e.g.
Fann et al. (2012), Lepeule et al. (2012), Schwartz et al.
(2017), and Lo et al. (2016).

� Computer-based modeling studies assume that simulated
impacts in a computer model predict real-world
responses. Many recent studies simulate health impacts
of changes in exposures by applying C–R impact factors
or functions to simulated changes in exposure
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distributions. Validation of such models for specific appli-
cations is crucial for determining their usefulness and
trustworthiness, but in practice they are usually used
without such validation. As one prominent example, the
United States Environmental Protection Agency (EPA) pro-
vides a publicly available computer program, BenMAP,
that quantifies the subjective judgments of selected
experts about C–R relations. The technical documentation
for BenMAP (US EPA 2015, Table E-1, Health Impact
Functions for Particulate Matter and Long-Term Mortality,
pages 60–61) explicitly and repeatedly states “no causal-
ity included” in summarizing health impact associations
based on expert judgments. The text further explains
that “Experts A, C, and J indicated that they included the
likelihood of causality in their subjective distributions.
However, the continuous parametric distributions speci-
fied were inconsistent with the causality likelihoods pro-
vided by these experts. Because there was no way to
reconcile this, we chose to interpret the distributions of
these experts as unconditional and ignore the additional
information on the likelihood of causality.” BenMAP's
health functions for long-term impacts should not be
interpreted causally without carefully addressing these
caveats. Nonetheless, many investigators present the
results of BenMAP calculations as if they yielded
“Estimated Excess Morbidity and Mortality Caused by Air
Pollution” (Cromar et al. 2016) despite the BenMAP docu-
mentation and even though BenMAP has not been vali-
dated as a causal model. Similar comments apply to the
increasingly widespread use of statistical and computa-
tional models to infer changes in mortality from changes
in exposure concentration based on previously estimated
C–R slope factors, without any attempt to validate
manipulative causation (e.g. Lin et al. 2016).

Although most current literature on formal causal model-
ing of PM2.5-associated health effects depends on unverified
assumptions, several recent papers strongly emphasize their
authors’ subjective confidence and conviction that associa-
tions can and should be interpreted causally. For example,
one recent paper asserts that, in Boston, “the association
between PM2.5 and deaths is almost certainly causal,” even
while noting that the supporting analysis “relies on the
untestable assumption of no unmeasured confounding” or
related untestable assumptions (Schwartz et al. 2015). This
leaves open the question of whether the untested assump-
tions are correct. It also ignores a substantial statistical litera-
ture on methods for testing the assumption of no
unmeasured confounding (Marra et al. 2014).

Many papers that express confidence in causal interpreta-
tions of epidemiological associations cite animal and in vitro
studies as providing additional evidence that supports the
hypothesis of causality (e.g. Schwartz et al. 2017). Adducing
such data, or more general discussions and conjectures about
plausible biological mechanisms by which exposures might
cause the effects attributed to them, as evidence that epi-
demiological associations should be interpreted causally is
problematic for several reasons. As noted by McClellan (2016)
in discussing one such paper, “much of this discussion is

quite simplistic and, indeed, naïve with regard to the actual
complexity of disease processes.” For example, premises such
as that exposure leads to increased levels of reactive oxygen
species (ROS) in the lung and that elevated levels of ROS in
the lung are found in certain lung diseases do not necessarily
constitute valid evidence that exposure increases risk of lung
diseases, as elevated ROS levels also occur in response to
exposure in healthy people and animals and do not necessar-
ily or usually indicate any pathological mechanism at work
(Cox 2011). More fundamentally, disease processes take place
within individuals, while epidemiological C–R functions, rela-
tive risk ratios, and regression coefficients describe associa-
tions at the level of populations of individuals. Discussion of
causal mechanisms, factor interactions, and confounding at
the individual level may have no clear implications for analo-
gous phenomena at the population level unless the fre-
quency distribution of heterogeneous individual types within
the populations is well understood (Maldonado 2013). Yet,
papers that adduce mechanistic evidence in the context of
epidemiological data seldom address this crucial methodo-
logical point, implicitly assuming that human populations can
be treated as if they were composed of homogeneous indi-
viduals, with mechanistic discussions at the individual level
being simply scaled up to apply to populations.

A more sober assessment is that all the papers we have
reviewed rely on implicit or explicit untested modeling
assumptions – typically, one or more of those discussed
above, such as that changes following an intervention were
caused by it, that statistical or computer simulation models
used to predict counterfactual outcomes do so correctly, that
instrumental variables are valid, and that unmeasured con-
founders do not exist – to justify their claims about causation.
All address statistical counterfactual or predictive causation
rather than manipulative causation, although manipulative
causation is what risk managers and policy makers need to
be informed about to predict effects of proposed interven-
tions such as regulations or coal burning bans. None of these
papers demonstrates a manipulative causal C–R relationship
between changes in exposure concentrations and changes in
total mortality risks. Some papers refute previous statistical
causal claims (e.g. Dockery et al. 2013). Thus, it appears that
the literature on adverse public health effects that are solidly
proved to be caused by PM2.5 exposure and to be prevent-
able by reducing PM2.5 exposure is still in its infancy despite
decades of association-based and assumption-based studies:
sound studies that address manipulative causality are still
very much needed.

Opportunities remain to apply modern causal inference
algorithms

The literature reviewed on PM2.5 health effects can be sum-
marized as follows.

1. Past key papers do not distinguish clearly between asso-
ciation and causation, or directly address manipulative
causation. As pointed out by Wang et al. (2016): “Many
studies have reported the associations between long-
term exposure to PM2.5 and increased risk of death.
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However, to our knowledge, none has used a causal
modeling approach.” Similarly, Schwartz et al. (2017)
noted that “While many time series studies have estab-
lished associations of daily pollution variations with daily
deaths… causal modeling approaches are also lacking.”

2. The previous section identified a few studies that seek to
apply assumption-based causal modeling approaches
such as intervention studies, instrumental variable mod-
els, counterfactual or potential outcomes models, pre-
dictive causation models, burden of disease models, and
computer simulation models. However, such studies are
rare compared to the large number that deal only with
associations. All of them rely on untested modeling
assumptions, of unknown validity, to justify interpreting
associations as causation.

3. More importantly, none of the papers reviewed clearly
distinguishes between statistical counterfactual or pre-
dictive causation and manipulative causation. None dem-
onstrates that manipulating exposure concentrations
would change future mortality risks, or that it has done
so in the past (once statistical errors in causal interpreta-
tions are corrected, as in the Dublin coal burning ban
studies discussed by Clancy et al. (2002) and Dockery
et al. (2013)). Frequent claims that reducing exposure
concentrations would reduce mortality appear to be
based on a widespread misconception that one type of
causation implies others, despite counterexamples such
as nicotine-stained fingers being a Granger cause but
not a manipulative cause of lung cancer.

In short, the preceding review finds that the very large lit-
erature making policy-relevant causal claims and predictions
about the human health effects of reducing air pollution is
not well supported by analyses appropriate for manipulative
causation. Causal claims about the predicted health effects of
reducing air pollution are typically derived by conflating caus-
ation with association and conflating manipulative causation
with other types of causation.

Fortunately, an extensive technical literature provides algo-
rithms for automated causal discovery, modeling and ana-
lytics that offer constructive means to address the preceding
limitations of existing C–R functions. These algorithms have
emerged from a confluence of research in economics and
econometrics, neuroscience, bioinformatics and systems biol-
ogy, physics, engineering, statistics and applied probability,
philosophy and formal logic, computer science, machine
learning, and artificial intelligence (Pearl 2009b). They clearly
distinguish among manipulative, counterfactual, predictive,
and other (e.g. exogeneity-based or dynamic transition-based)
forms of causation and enable causal inferences that do not
require untestable assumptions or subjective weight-of-evi-
dence judgments (Pearl 2010).

This technical literature on algorithms and methods for
causal inference from observational data is already large and
is growing rapidly though articles published in sources such
as The Journal of Causal Inference, Artificial Intelligence, Neural
Information Processing Workshops on Causality, Uncertainty in
Artificial Intelligence (UAI) conference proceedings, and docu-
mentation of algorithms implemented in R and Python. From

comparisons of the competitive performance of dozens of
causal inference algorithms on benchmark problems over the
past decade, it is possible to distill a short guide to the prin-
ciples and algorithms that generally work best in practice.
As of 2016, most top-performing methods in current causal
analytics competitions for observational data use some or
all the following principles (Bontempi & Flauder 2015; Hill
2016).

� Information principle: Causes provide information that
helps to predict their effects and that cannot be
obtained from other variables.

This principle creates a bridge between well-developed
computational statistical and machine learning methods for
identifying informative variables that improve prediction of
dependent variables such as health effects, and the needs of
causal inference. It allows techniques of predictive analytics
to be applied to screen variables for potential causation. In
practice, the information principle is usually implemented via
algorithms that identify conditional independence among vari-
ables (Pearl 2009a). By this criterion if effect Y is conditionally
independent of exposure variable X, given the values of other
variables, then X is not eligible to be a cause of Y. Granger-
causality is the special case of this principle in which the
future of Y must not be conditionally independent of the his-
tory of X, given the history of Y. Although conditional inde-
pendence tests do not establish manipulative causation, they
provide a useful screen for potential manipulative causes,
insofar as they provide a condition that is usually necessary
(but not sufficient) for manipulative causation. For example,
discovering that nicotine-stained fingers are a Granger cause
of lung cancer would allow nicotine-staining to be identified
as a potential manipulative cause of lung cancer, but we
know that smoking is the actual manipulative cause.

In practice, statistical dependencies among variables can
be discovered and displayed by algorithms that generate
Bayesian networks or classification and regression trees
(CART models) (Young & Xia 2013) from data, such as the
bnlearn or party packages package in R, respectively. A
Bayesian network (BN) shows arrows between pairs of varia-
bles that are statistically dependent even after conditioning
on all other variables. Arrows between variables are absent
if they are conditionally independent of each other after
conditioning on other variables (e.g. Pearl 2009b; Rottman &
Hastie 2014). The structure of such networks can often be
learned directly from large data sets, rather than having to
be specified as a hypothesis or based on expert knowledge,
by using algorithms that test for conditional independence
and quantify conditional probability dependencies (Frey
et al. 2003; Aliferis et al. 2010; bnlearn package documenta-
tion by M. Scutari, www.bnlearn.com/). A CART tree (or,
more generally, a “recursive partitioning” tree) shows combi-
nations of values of predictors (or of ranges of their values)
that yield significantly different conditional distributions for
the dependent variable, and in this sense provide useful
information for predicting it. Such trees can be used to help
learn Bayesian network structures and to quantify their
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conditional probability tables from data (Frey et al. 2003;
Aliferis et al. 2010).

� Propagation of changes principle: Changes in causes help
to explain and predict changes in their effects (Wu et al.
2011; Friston et al. 2013). This applies the information
principle to changes in variables over time. It can often
be visualized in terms of changes propagating along links
(representing statistical dependencies) in a Bayesian net-
work or other network model (e.g. Friston et al. 2013).
The goal of causal analysis in C–R modeling is to predict
how changing exposure would change health effects, so
studying how changes propagate among variables over
time is of great interest. In practice, examining propaga-
tion of changes from exposure to response variables
requires longitudinal data and analysis of information
flows from lagged to present values of variables.

� Nonparametric analyses. Multivariate non-parametric
methods, most commonly, classification and regression
trees (CART) algorithms, are used to identify information
dependencies among variables (e.g. Halliday et al. 2016).
If no significant change occurs in the conditional empir-
ical cumulative distribution function of a dependent vari-
able as the value of an explanatory variable varies, for
any combination of values of the remaining variables,
then this lack of dependence does not support a conclu-
sion that the explanatory variable is a cause of the
dependent variable. The dependent variable is then con-
ditionally independent of the explanatory variable, given
the values of other variables. Effects are not conditionally
independent of their direct causes. The useful fact that
CART trees can also be used to test for conditional inde-
pendence, with the dependent variable being condition-
ally independent of variables not in the tree, given the
variables that are in it, at least as far as the tree-growing
algorithm can discover, only became widely appreciated
and applied in causal analysis and machine-learning after
2000 (e.g. Frey et al. 2003; Aliferis et al. 2010). CART trees
can be automatically generated using freely available
tree-growing recursive partitioning algorithms in R pack-
ages such as party or rpart or Python scikit-learn.

� Model ensembles. Rather than relying on any single statis-
tical model, the top-performing causal analytics algo-
rithms typically fit hundreds of nonparametric models to
subsets of the data (e.g. CART trees grown on random
subsets of predictors to help de-correlate their predic-
tions) (Hernandez et al. 2015; Furqan & Siyal 2016).
Averaging predictions of how the dependent variable
depends on other variables over an ensemble of models
usually yields estimates with lower bias and error vari-
ance than any single predictive model. Computational
statistics packages such as the randomForest package in R
automate construction, validation, and predictive ana-
lytics for such model ensembles and present results in
simple graphical forms. For example, partial dependence
plots show how predicted values of a dependent variable
change as a single predictor is systematically varied leav-
ing all other variables with their empirical distributions
(http://scikit-learn.org/stable/auto_examples/ensemble/

plot_partial_dependence.html). Applied to C–R functions,
such partial dependence plots show how R varies with C
when accounting for the effects on R of all other variables
via an ensemble of CART trees. If this dependency repre-
sents manipulative causality, then the partial dependency
plot indicates how the conditional expected value of R
should be expected to change when C is manipulated,
given the empirical joint distribution of other measured
predictors on which R also depends. This is an important
if. Even state-of-the-art causal inference algorithms typic-
ally do not allow manipulative causality to be inferred con-
fidently in the absence of interventions. Thus, humility
about what can be accomplished using only observational
data is prudent. But Bayesian Networks, randomForest
ensembles, and partial dependence plots do allow possible
causal dependencies – meaning dependencies that satisfy
the information principle – to be identified and quantified
from data. They also have several important practical
advantages, including

� Automating variable-selection and coding, thus reduc-
ing opportunities for p-hacking and confirmation bias
to affect the analysis and conclusions;

� Detecting and modeling high-order interactions among
variables. This can be done using trees representing
conjunctions of predictor ranges that lead to signifi-
cantly different conditional distributions of the
dependent variable, with the depth of the tree corre-
sponding to the order of interactions considered;

� Coping with model uncertainties by using ensembles
of models; and

� Avoiding model selection and misspecification biases
by using non-parametric methods to avoid having to
make parametric regression modeling assumptions.

As noted by Hernandez et al. (2015), “Random Forest
(RF)… is a popular method for dealing with high-dimen-
sional data, mainly because of its computational speed and
high accuracy. It is a non-parametric method and so does not
make any major distributional assumptions about the data.
RF automatically allows for non-linear interaction effects, a
desirable property in many high-dimensional datasets … .
However, as RF is a machine learning algorithm and does not
use a statistical model it cannot provide probability-based
uncertainty intervals as in a Bayesian setting.” Hybrid algo-
rithms such as Bayesian Additive Regression Trees using
Bayesian Model Averaging (BART-BMA) have very recently
been proposed as a promising approach to combine these
strengths of RFs with the ability of Bayesian methods to gen-
erate posterior uncertainty intervals (Hernandez et al. 2015;
Chipman & McCullogh 2016). Such hybrid methods improve
on traditional Bayesian Model Averaging (BMA) for parametric
regression models by using nonparametric trees and allowing
the forms of dependencies, rather than just the predictors
selected, to be varied and averaged over. However, although
they may well turn out to represent a lasting and valuable
advance, these comparatively recent Bayesian tree ensemble
approaches are not yet as mature and well-tested as pure RF
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ensemble methods, which will therefore be used for the com-
putations in this paper.

The design principles for causal inference algorithms just
described – the information principle, propagation of
changes, use of nonparametric estimates, and averaging over
ensembles of predictions – characterize information-based
approaches to causal inference. They emphasize discovery of
which variables in a data set are informative about, and
hence help to predict, which others, without regard for statis-
tical associations and without depending on any specific
parametric modeling assumptions. Information-based
approaches are very different from associational or assump-
tion-based ones. For example, two variables can be highly
informative about each other even if the statistical correlation
between them is zero, as in the case of Y¼ X2 where X is uni-
formly distributed between �1 and 1. Conversely, two varia-
bles Y and Z can be strongly correlated even if they are
conditionally independent of each other, so that neither pro-
vides information that helps to predict the other, given the
values of other variables. An example is the system Y¼ X2

and Z¼ X2, with the value of X determining the values of
both Y and Z. In this case, Y and Z will be perfectly correlated
with each other (but not with X), although neither causes the
other and X causes both. Information-based methods comple-
ment the assumption in potential outcomes or counterfactual
models, that differences in causes make effects differ from
what they otherwise would have been, with the idea that dif-
ferences in causes help to predict differences in their effects.
This should be true even when using nonparametric and
model ensemble methods to make the predictions, including
testing for conditional independence and quantifying prob-
abilistic dependencies. Whether one variable helps to predict
another can be tested using observational data without mak-
ing hypothetical modeling assumptions about what would
have happened had exposures or other conditions been dif-
ferent from those observed, and without relying on specific
parametric modeling assumptions of unknown validity, by
using nonparametric methods such as Bayesian Network
learning, tree-growing algorithms, and ensemble methods.

Empirically, causal inference algorithm performance and
validation results from a recent causal inference competition
(Hill 2016) yielded the following quantitative results for com-
parison of a tree-based algorithm to a counterfactual/poten-
tial outcomes algorithm (Inverse Probability of Treatment
Weighting (IPTW)), averaged over 20 challenge data sets for
which the correct data-generating processes were known to
the competition organizers, but not to the causal inference
algorithm designer competitors who submitted algorithms to
estimate these known causal relationships.

� Bias: Nonparametric regression tree methods had a bias
of �0.007 in estimating the causal effects from data,
compared to a �0.15 bias, about 20-fold greater, for the
IPTW counterfactual causality algorithm.

� Error: The nonparametric regression tree algorithm
yielded a root mean-squared prediction error of 0.02
compared to 0.41 for the IPTW algorithm, i.e. again about
a 20-fold difference.

� Coverage probabilities and uncertainty interval lengths: The
nonparametric regression tree algorithm had smaller
uncertainty intervals and larger coverage probabilities
than the IPTW algorithm.

It thus appears that the nonparametric tree-based
approach can complement counterfactual approaches in at
least some cases, not only requiring fewer modeling assump-
tions, but also providing better performance.

A hands-on example: C–R modeling of annual
changes in PM2.5 and elderly mortality rates in
Boston and Los Angeles

This section moves beyond a critical review of the literature
on C–R functions and causal inference algorithms by applying
modern information-based causal inference principles and
algorithms to publicly available data for Boston (Suffolk
County, MA) and Los Angeles (South Coastal Air Quality
Management District (SCAQMD), CA) area data. The goal is to
explore what can be learned about associational and predict-
ive causal C–R functions by these methods, recognizing that,
despite their extensive development in the journals and liter-
atures previously cited, information-based causal analysis
methods have not yet been widely used or well vetted in air
pollution health effects research and epidemiology.
Accordingly, our exploration is cautious, seeking only to illus-
trate the insights produced by applying these algorithms to
two example data sets, rather than to reach definitive general
conclusions. However, the state-of-the-art in computational
statistical software makes these methods easy to apply, and it
is more instructive to do so than only to discuss the literature
about them.

Data

We use two data sets to illustrate information-based causal
analytics methods, one from the Boston area (Suffolk County,
MA) for 2000–2013 and the other from California’s SCAQMD,
which contains Los Angeles, for 2007–2010. The data fields
for both areas are similar. Table 2 shows the layout of the
data for the SCAQMD, from Lopiano et al. (2015). (The full
data set can be downloaded from http://cox-associates.com/
downloads; it is data set “Sample1” in the CAT software

Table 2. Layout of data for PM2.5 concentration, weather, and elderly mortal-
ity (“mortality75”) variables in the LA-SCAQMD.

Year Month Day Mortality75 PM2.5 tmin tmax MAXRH

2007 1 1 151 38.4 36 72 68.8
2007 1 2 158 17.4 36 75 48.9
2007 1 3 139 19.9 44 75 61.3
2007 1 4 164 64.6 37 68 87.9
2007 1 5 136 6.1 40 61 47.5
2007 1 6 152 18.8 39 69 39
2007 1 7 160 19.1 41 76 40.9
2007 1 8 148 13.8 41 83 33.7
2007 1 9 188 14.6 41 84 37.5
2007 1 10 169 39.6 41 78 63.2
2007 1 11 160 19.2 37 66 85.9
2007 1 12 160 22.3 31 56 67.2
2007 1 13 166 11.7 27 55 40.4
2007 1 14 157 20.8 24 56 34
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at that web site. The Boston data is “Sample4”.) The full data
set has 1,461 rows of data, one for each day from 1 January
1 2007 to 31 December 2010. The variables (columns) in
Table 2, and their data sources, are as follows:

� Calendar variables year, month, and day identify when
the data were collected. Each row of data represents one
day of observations.

� mortality75 is a count variable giving the number of
deaths among people aged at least 75 dying on each
day, as recorded by the California Department of Health
at www.cdph.ca.gov/Pages/DEFAULT.aspx. (This variable
was originally named AllCause75, but we renamed it as
mortality75.)

� PM2.5 is the daily average ambient concentration of fine
particulate matter (PM2.5) in micrograms per cubic meter
of air, as recorded by the California Air Resources Board
(CARB) at www.arb.ca.gov/aqmis2/aqdselect.php.

� The three meteorological variables tmin¼minimum daily
temperature, tmax¼maximum daily temperature, and
MAXRH¼maximum relative humidity, are from ORNL
(http://cdiac.ornl.gov/ftp/ushcn_daily/) and the US
Environmental Protection Agency (EPA) www3.epa.gov/
ttn/airs/airsaqs/detaildata/downloadaqsdata.htm.

Lopiano et al. (2015) and the above sources provide fur-
ther details on these variables. For example, for the
Mortality75 variable, Lopiano et al. explain that elderly mortal-
ity counts consist of “The total number of deaths of individu-
als… 75þ years of age with group cause of death
categorized as AllCauses… . Note accidental deaths were
excluded from our analyses.” The definitions of the popula-
tions covered and the death categories used are taken from
the cited sources, but it is clear that average PM2.5 concen-
trations at monitor sites do not apply in detail to each indi-
vidual, any more than the weather conditions describe each
individual’s exposure to temperature and humidity. Rather,
these aggregate variables should be interpreted only as pro-
viding data from which we can study whether days with
lower recorded PM2.5 levels, or lower recorded minimum
temperatures, relative humidity, and so forth, also have lower
mortality, and, if so, whether predictive causality or other
causal relationships hold between them. In addition to these
variables, we also include the derived variable time, defined
as the total number of months since the start of the data set.
Month and year are each treated as categorical variables, but
time is a continuous variable that allows longer-term trends
to be modeled.

The Boston data are very similar, but with Dewpoint
replacing MAXRH as a measure of humidity, and years rang-
ing from 2000 to 2013. PM2.5 data were obtained from the
US EPA Air Quality System (AQS) website (www.epa.gov/ttn/
airs/airsaqs/) for central-site monitoring locations in the
Greater Boston Area; daily quality controlled local climato-
logical data (QCLCD) were downloaded from NOAA; and indi-
vidual-level mortality records were obtained from the
Massachusetts Department of Public Health.

We focus on elderly people (�75 years old) because
past literature has pointed to the elderly as being especially

susceptible to health harm from PM2.5 (Goto et al. 2016),
with considerable conjecture about causal mechanisms such
as PM2.5 increasing oxidative stress and cardiovascular dis-
ease risks (Wang et al. 2016). Past literature has also noted
that “in a time-series study in Boston [moving] the time scale
from days to months (i.e. 60 d) increased the estimated PM
effect” (Laden et al. 2006, citing earlier work by Schwartz
et al.). We therefore aggregate the PM2.5 and elderly mortal-
ity data to the monthly level, so that our C–R functions will
describe relations between monthly averages of daily PM2.5
concentrations and monthly averages of daily mortality
counts for people 75 years old or older. The key question for
C–R modeling with these choices of endpoints and time
scales is whether months with higher average PM2.5 have
correspondingly higher elderly mortality rates after control-
ling for other factors. For studying how well changes in
PM2.5 levels help to predict changes in elderly mortality
rates, we follow Wang, Kloog et al. (2016) in using a change
over a one-year time interval. The key research question is
how well differences in PM2.5 from one month to the same
month a year later in a given location (Boston or the
SCAQMD) predict corresponding differences in elderly mortal-
ity counts.

To give a visual impression of the data, Figure 1 plots sev-
eral of the variables for the 48months from January 2007
(denoted as 200701) to December 2010. Monthly averages of
daily minimum and maximum temperatures, PM2.5 concen-
trations, and mortality counts are shown. Since the SCAQMD
has a population close to 20 times larger than Boston’s, the
Boston mortality counts are multiplied by 20 in Figure 1 to
put them on the same scale. It is clear from visual inspection
of Figure 1 that elderly mortality decreases as temperature
increases, but it is much less clear whether PM2.5 variations
help to predict elderly mortality variations. Answering that
question is a challenge for C–R analysis.

Methods and analytic plan

Our analytic plan is as follows.

1. Identify conditional independence and dependencies
among variables in Table 2 using nonparametric
Bayesian network learning algorithms and regression
trees. This step screens for possible causal relations using
the previously discussed information principle that vari-
able X is a potential cause of variable Y only if X provides
information that helps to predict Y and that cannot be
obtained from other sources.

2. Repeat step 1 for changes in variables over a time interval
of one year. This implements the propagation-of-changes
principle that changes in causes should help to predict
changes in their effects.

3. Quantify the C–R dependence (if any) between PM2.5 con-
centration and elderly mortality, without further assessing
whether it is causal, using a partial dependence plot
generated by the randomForest package in R. As dis-
cussed in the previous section, this algorithm averages
the results of hundreds of nonparametric regression trees
to estimate how daily mortality count varies as PM2.5 is
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swept over its full range of values. The randomForest
package documentation contains details of this process
(https://cran.r-project.org/web/packages/randomForest/
randomForest.pdf).

4. Compare the results from steps 1–3 to those from mul-
tiple linear regression analysis.

All analyses were performed using free computational sta-
tistics packages from the CRAN repository for the R project,
https://cran.r-project.org/, as follows:

� Bayesian Network learning algorithms were run using the
R package bnlearn, (www.bnlearn.com/) with all settings
at their default values. This implements the information
principle by using nonparametric machine learning algo-
rithms to discover conditional independence and
dependencies among variables.

� Regression trees were grown using the R package party
(https://cran.r-project.org/web/packages/party/party.pdf)
to further explore and visualize multivariate dependency
and conditional independence relationships.

� randomForest model ensembles were generated by the R
package randomForest, (https://cran.r-project.org/web/
packages/randomForest/randomForest.pdf) to quantify
associations between two variables, controlling for the
levels of other variables using multiple nonparametric
models.

� Additional R packages (car, MASS, leaps, MSBVAR) were
used for parametric regression analyses and Granger
causality testing.

To facilitate easy replication and interpretation by investi-
gators not familiar with these packages, we accessed all R
packages and displayed results using the Causal Analysis
Toolkit (CAT), a free add-in for Microsoft Excel developed by

the author and George Washington University Regulatory
Studies Center for assessing the causal impacts of regulations
using R packages (GWU 2016). The analyses can be replicated
by clicking on the “Analyze” button on CAT. Details on CAT
are provided in an appendix to Cox (2016) and in a User’s
Guide at www.cox-associates.com/downloads/. Details of all
algorithms and supporting statistical theory are given in the
online documentation for the corresponding R packages.

Results and discussion

This section first discusses results for Boston and then com-
pares them to results for the LA (SCAQMD) air basin. As a
point of departure, we note that if the goal were simply to
find associational models in which PM2.5 is significantly posi-
tively associated with elderly mortality after controlling for
selected other variables via regression, it could easily be
accomplished. Table 3 shows an example of such a regression
model for the Boston data, with a highly significant regres-
sion coefficient (p¼ 1.7E�9) of 0.17 for PM2.5, implying that
each 10 lg/m3 increase in PM2.5 is associated with an aver-
age of 1.7 extra deaths per day, about a 22% increase, since
the mean death count is 7.675 deaths per day. Of course, as
discussed earlier, such associations do not necessarily reveal
anything about causation, since the association could be
explained by non-causal factors such as omission of time as a
potential confounder, in this example. Once time is included,
so that the downward secular trends in PM2.5 and mortality
as functions of time (elapsed months) can be modeled, PM2.5
no longer appears as a statistically significant predictor of
elderly mortality in multiple linear regression (p¼ 0.25 instead
of 1.7E�9), indicating that it appears as a highly statistically
significant predictor in Table 3 only because it is acting there
as a surrogate for the omitted variable time. Applying the
Granger causality test using the granger.test function in the R

Figure 1. Monthly time series of selected variables, 2007–2010.
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package MSBVAR shows that PM2.5 and elderly mortality are
Granger-causes of each other, meaning that past and current
values of each are significant predictors of the future values
of the other, even after conditioning on its own past values
and current value. Again, this indicates likely confounding by
one or more other variables, such as time and/or tempera-
ture, that are correlated with both PM2.5 and elderly mortal-
ity, thereby making each informative about the other in
bivariate analyses when the confounders are omitted. In both
cases, statistical significance of an association does not imply
substantive or causal significance.

Figure 2 shows the structure of a Bayesian network (BN)
learned from the same Boston data by the R package bnlearn.
In this network, an arrow between two variables shows that
they are not conditionally independent of each other.
Absence of arrows between two variables shows that they
are conditionally independent of each other given the values
of other variables. The directions of the arrows do not neces-
sarily reflect causality. They simply indicate one way to
decompose the joint probability distribution of all variables
so that it can be computed from the marginal distributions
of the input variables, those with only outward-pointing
arrows, and conditional probabilities for the values of each
other variable, given the values of the variables that point
into it (Pearl 2009a). Nonetheless, the Bayesian network is a
useful guide to possible predictive causality, insofar as the
information principle implies that one variable can be a cause
of another only if they are adjacent (linked by an arrow) in
the Bayesian network. Figure 2 indicates that the passage of
time is informative about both elderly mortality and PM2.5
(both decline with time), providing a reason that they are
Granger-causes of each other.

If the bnlearn algorithms for discovering conditional inde-
pendence and dependencies were completely accurate and

trustworthy oracles, we would be done: Figure 2 would imply
that PM2.5 concentration is not a predictive cause of elderly
mortality risk on the chosen time scale of months, and thus
is also unlikely to be a manipulative cause. The highly statis-
tically significant (p< 1.7E�9) regression coefficient for PM2.5
as a predictor of elderly mortality in Table 3 would then be
an example of a statistical effect but not a causal one. (In this
case, fitting a linear model for elderly mortality counts intro-
duces model specification errors that can be reduced by
including PM2.5 or other month-dependent variables, thus
making PM2.5 a useful statistical predictor even if it has no
causal impact on mortality.) However, no algorithms for learn-
ing Bayesian network structures are perfectly accurate, and it
is therefore worth continuing the analysis assuming that a
C–R relationship might exist and simply be too weak to have
been detected by the bnlearn algorithms.

Figure 3 shows a regression tree grown on the same
Boston data as in Figure 2 and Table 3 using the party pack-
age in R. This tree identifies combinations of ranges of values
for multiple variables that lead to significantly different condi-
tional distributions for the elderly mortality (mortality75)
dependent variable. The variables selected by the tree-grow-
ing algorithm as informative for predicting elderly mortality
include time and tmin, in agreement with the Bayesian net-
work in Figure 2, but also include PM2.5, unlike the Bayesian
network. To read the regression tree in Figure 3, note that
each shaded “leaf” node at the bottom of the tree shows the
conditional mean value of the dependent variable, elderly
mortality, given the ranges of values for the variables in the
path leading to that leaf. For example, the right-most leaf
node has an average elderly mortality count of 6.646 deaths
per day for n¼ 53months with tmin> 48.677� and time-
> 45months. The intermediate nodes show the p values
from F tests for rejecting the null hypothesis that the

Table 3. Example of a multiple linear regression model for Boston with a significant positive C–R coefficient for the associ-
ation between PM2.5 and elderly mortality.

CAT_linear (mortality75, PM2.5, tmax, tmin, Dewpoint, month)
Dependent variable: mortality75

Residuals:
Min 1Q Median 3Q Max
�1.4800 �0.4655 �0.0493 0.4449 1.9475

Coefficients:
Estimate SE t Value Pr(>jtj)

(Intercept) 8.37718 0. 77798 10. 77 < 2e�16���
PM2. 5 0.17307 0.02696 6.42 1.7e�09���
tmax �0.01625 0.03747 �0.43 0.665
tmin �0.05547 0.06282 �0.88 0.379
Dewpoint 0.00464 0.03384 0.14 0.891
Month10 1.13162 0.59401 1.91 0.059����
Month11 0.47998 0.42894 1.12 0.265
Month12 0.01960 0.29656 0.07 0.947
Month2 �0.07521 0.27538 �0.27 0.785
Month3 0.33780 0.33338 1.01 0.313
Month4 0.91830 0.47917 1.92 0.057�����
Month5 0.88112 0.64737 1.36 0.176
Month6 0.56257 0.83408 0.67 0.501
Month7 0.68506 0.96497 0.71 0.479
Month8 0.98317 0.95095 1.03 0.303
Month9 1.11129 0.80365 1.38 0.169

Residual standard error: 0.712 on 152 degrees of freedom.
Multiple R-squared: 0.596; Adjusted R-squared: 0.556.
F-statistic: 14.9 on 15 and 152 degrees of freedom, p-value <2e� 16.
Significant codes: ���0.001; ����0.1; and the rest at 1.
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conditional distributions of elderly mortality are not different
from each other on the left and right of each split. Figure 3
shows that months with warmer temperatures have lower
average daily elderly mortality counts and that mortality rates

have decreased over time. Relatively cold months with an
average daily minimum temperature below 48.677� and aver-
age PM2.5 concentrations above 13.271lg/m3 have elevated
elderly mortality.

Although individual trees are often not robust to perturba-
tions in the data (e.g. growing trees on multiple random sub-
sets of the data may produce many different trees),
averaging results over ensembles of hundreds of trees for
random subsets of the data using the randomForest R pack-
age yields the relatively robust C–R partial dependence plot
in Figure 4. The same plot is shown on two different vertical
scales, the left one emphasizing the variations that occur
over their narrow range, and the right showing that the plot
is almost flat when considered on a vertical scale that
includes the origin. As average daily PM2.5 concentrations for
specific months range over 2-fold, from <10 lg/m3 to
>20 lg/m3, corresponding average daily elderly mortality
counts range from about 7.64 to about 7.75 deaths per day,
or roughly 1.01-fold. Although this variation could be due to
omitted confounders or residual confounding within the
intervals for continuous variables constructed by the tree-
growing algorithm, no test performed so far rules out the
possibility of a genuine predictive causal effect.

However, when the same analyses are repeated using
changes in variables over a one-year period, the results are
quite different. Only change in tmin is a significant predictor
of change in elderly mortality, being adjacent to it in the
Bayesian network for changes. Change in PM2.5 is also adja-
cent to change in tmin, so change in temperature could con-
found any association between change in PM2.5 and change

Figure 2. Structure of Bayesian network for Boston data discovered by R package bnlearn.

Figure 3. A regression tree for elderly mortality in the Boston data.
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in mortality. Regression trees do not identify any significant
predictors of change in elderly mortality, but plotting the
empirical cumulative distribution function (ECDF) of change
in mortality (between a month and that same month a year
later) conditioned on the upper and lower quartiles of values
for change in tmin shows that increases of more than 2.45� in
tmin are associated with reductions in elderly mortality risks (a
leftward-shifted ECDF curve), while decreases in tmin by 2.19�

or more are associated with increases in elderly mortality risks
(rightward-shifted ECDF curves). By contrast, for PM2.5 the
ECDFs for the top and bottom PM2.5 quartiles are not shifted
in either direction but cross and re-cross each other. Thus, in
this case, the Bayesian network algorithm proves more sensi-
tive than regression trees in detecting what appears to be a
genuine dependency relation between temperature and eld-
erly mortality, and also perhaps more accurate than classifica-
tion trees in identifying no significant dependency between
PM2.5 and elderly mortality rate once other variables such as
temperature and time have been accounted for by condition-
ing on their values.

Finally, we examine how well the C–R curve estimated in
Figure 4 for Boston applies to the SCAQMD air basin.
Figure 5 shows the main result. As average daily PM2.5 con-
centration in different months ranges from <20 lg/m3 to
>40 lg/m3, average daily mortality counts stay essentially flat
at 134.5 ± 0.5 deaths per day, with the slight residual C–R
association between them being negative. PM2.5 and elderly
mortality are adjacent in the Bayesian network for the
SCAQMD, so the possibility of a slightly negative causal rela-
tion is not ruled out by these data. Ideally, confidence bands

or uncertainty intervals would be provided with such plots,
but, as noted by Hernandez et al. (2015), “However, as RF is a
machine learning algorithm and does not use a statistical
model it cannot provide probability-based uncertainty inter-
vals as in a Bayesian setting.” Instead, we simply note that
the PM2.5-elderly mortality association is positive in Figure 4
and negative in Figure 5, so that both cannot be correct
descriptions of one and the same causal relationship.

Comparing Figures 4 and 5, it is clear that estimated C–R
functions cannot simply be transferred from one city or
region to another. Table 4 confirms this for regression. In
contrast to Table 3 for Boston, in a multiple linear regression
model for the SCAQMD air basin, tmin has a significant nega-
tive association with elderly mortality for the LA region, but
PM2.5 has no significant association with mortality. In a differ-
ent regression model with only PM2.5, MAXRH, and year
included as predictors, the C–R association between PM2.5
and elderly mortality is actually negative, �0.633, with
p< .10, suggesting that confounding by tmin and month can
affect the regression coefficient for PM2.5 if they are omitted
from the model. Regression tree analysis identifies only tmin

as a predictor of elderly mortality, with average daily mortal-
ity counts of 147.5 deaths per day when tmin is below 45.4�,
compared to 120.6 deaths per day when tmin exceeds 58.1�.
In the analysis of changes over a one-year period, however,
neither regression tree analysis nor Bayesian network learning
identified any dependencies among changes that helped to
predict changes in elderly mortality, including changes in
tmin, in contrast to Boston. Taken as a whole, these results
suggest that the common practice of transferring C–R

Figure 4. A C–R partial dependence plot for elderly mortality vs. PM2.5 in Boston.
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regression coefficients or associations estimated from data for
one region to exposure changes estimated for a different
area, as in the papers of Apte (2015), Cromar et al. (2016), Lo
et al. (2016), and many others, is not well justified. Whether

because of differences in PM2.5 composition or between
populations or because associations in one area simply do
not reflect stable causal laws useful for predicting impacts in
another, it appears that there is no single C–R function that

Figure 5. A C–R partial dependence plot for elderly mortality vs. PM2.5 in the SCAQMD air basin in southern California.

Table 4. Example of a multiple linear regression model for the SCAQMD air basin with a significant negative coeffi-
cient for the association between tmin and elderly mortality.

CAT_Iinear (mortality_75, PM2.5, tmin, MAXRH, month)
Dependent variable: mortality_75

Residuals:
Min 1Q Median 3Q Max
�8.044 �2.956 �0.296 1.778 16.436

Coefficients:
Estimate SE t Value Pr(>jtj)

(Intercept) 197.2808 20.6510 9.55 5e�11���
PM2 .5 0.1868 0.1956 0.96 0.3464
tmin �1.1148 0.4988 �2.23 0.0323�
MAXRH �0.0634 0.1623 �0.39 0.6985
month10 �9.1743 7.3792 �1.24 0.2225
month11 �14.2395 4.6642 �3.05 0.0045**

month12 �9.7250 4.0597 �2.40 0.0224*

month2 4.8563 4.3763 1.11 0.2752
month3 0.7252 4.4807 0.16 0.8724
month4 �7.3510 5.3307 �1.38 0.1772
month5 �9.0287 7.0615 �1.28 0.2100
month6 �6.3543 8.9425 �0.71 0.4823
month7 �8.0882 10.9337 �0.74 0.4671
month8 �7.0913 11.1635 �0.64 0.5297
month9 �6.8509 10.2753 �0.67 0.5096

Residual standard error: 5.21 on 33 degrees of freedom.
Multiple R-squared: 0.874; Adjusted R-squared: 0.82.
F-statistic: 16.3 on 14 and 33 degrees of freedom, p-value: 6.15e� 11.
Significant codes: ���0.001; ��0.01; �0.05; and the rest at 1.

18 L. A. COX



correctly describes historical PM2.5-elderly mortality associa-
tions for both the Boston and the Los Angeles regions,
controlling for the effects of other variables as in Figures 4
and 5. Nor does there appear to be a C–R function that
allows changes in month-specific mortality risks to be pre-
dicted based on changes in month-specific PM2.5 concen-
trations, as no dependencies were found between these
changes. These analyses do not support the usual assump-
tion that a C–R function exists that can be used for these
purposes.

Study uncertainties, limitations, and extensions

No proof of manipulative causality from observational
data

The methods and conclusions illustrated in Figures 2–5 and
our review of frameworks for causal inference and modeling
of C–R functions have several limitations. First, the informa-
tion-based approaches illustrated in Figures 2–5 only address
whether conditions that are typically necessary for manipula-
tive causation hold, such as whether exposures help to pre-
dict mortality rates after conditioning on observed
confounders. These conditions do not provide sufficient con-
ditions for inferring or quantifying manipulative causation
based on observational data. They cannot, and are not
intended to, “prove” manipulative causation based on obser-
vational data. Rather, they can be viewed as screening tests
that establish whether, in the data analyzed, exposures are
found to significantly predict health effects (and changes in
exposure are found to significantly predict changes in
responses), even after conditioning on other variables. If so,
then it might be prudent to tentatively assume, for purposes
of risk management, that C–R relations that have passed
these screening tests are causal, while acknowledging that
the tests stop short of definitively proving that exogenously
changing (i.e. manipulating) future exposures would change
future responses.

In the presence of unmeasured confounders, causality is
difficult to establish for a relatively weak health risk factor
such as ambient air pollution. However, consistency of the
hypothesis of causation with available data can be estab-
lished or refuted more easily. Even when confounders are not
measured, their effects can often be detected as unexplained
but significant associations between observed responses in
disjoint subpopulation, such as between mortality rates
among men over 75 and women under 75. Conditions for
estimating effects of unmeasured (“latent”) variables and for
detecting causal paths despite unmeasured confounders have
been developed (e.g. Spirtes et al. 1995). Focusing on neces-
sary conditions that can be tested using available data helps
to avoid the admitted philosophical and statistical difficulties
of defining necessary and sufficient conditions for establish-
ing manipulative causation, and also the need to make
strong, untested assumptions to justify stronger causal con-
clusions. The price of this simplicity and testability is that the
conclusions reached are only about predictive causation and
not necessarily about manipulative causation.

No elucidation of causal pathways or explanatory
causal mechanisms mediating C–R relationships

A second important limitation of the methods we have
reviewed and illustrated is that they focus on whether there
is evidence that a predictive causal C–R relation is present,
and on quantifying it if so, but not on explaining how it
works. This non-explanatory approach is sometimes referred
to as “black box” causal analysis (Imai et al. 2011). Its goals
are far more modest than those of automated causal discov-
ery algorithms in general (Cooper et al. 2015; Spirtes & Zhang
2016). Current research in causal discovery seeks to provide
algorithms and principles to support the common scientific
ambition “to understand the mechanisms by which variables
came to take on the values they have (i.e. to find a genera-
tive model), and to predict what the values of those variables
would be if the naturally occurring mechanisms were subject
to outside manipulations” (Spirtes 2010) – in other words, to
address causal explanation, to reveal how causes produce
their effects, and to make accurate predictions based on
understanding of manipulative causation. This is part of the
philosophical agenda of causal realism, succinctly described
as follows (Lewis-Beck et al. 2003):

There are two broad types of theories of causation: the Humean
theory (“causation as regularities”) and the causal realist theory
(“causation as causal mechanism”). …Consider these various
assertions about the statement, “X caused Y”:

� X is a necessary and/or sufficient condition of Y.
� If X had not occurred, Y would not have occurred.
� The conditional probability of Y given X is different from the

absolute probability of Y (P(YjX) 6¼ P(Y)).
� X appears with a non-zero coefficient in a regression equa-

tion predicting the value of Y.
� There is a causal mechanism leading from the occurrence of

X to the occurrence of Y.

The central insight of causal realism is that the final criterion is in
fact the most fundamental. According to causal realism, the fact
of the existence of underlying causal mechanisms linking X to Y
accounts for each of the other criteria; the other criteria are
symptoms of the fact that there is a causal pathway linking X to
Y. … Causal realism insists, finally, that empirical evidence must
be advanced to assess the credibility of the causal mechanism
that is postulated between cause and effect. …A causal
mechanism is a sequence of events or conditions, governed by
lawlike regularities, leading from the explanans to the
explanandum.

The challenge of elucidating causal pathways and proc-
esses describing how changes in exposures propagate
through sequences of law-like biological, chemical, or other
mechanisms to affect health, thus yielding explanations of
C–R causal relations that can be used to predict accurately
the health effects in individuals or populations of manipulat-
ing exposures, has been addressed via extensions of the prin-
ciples and algorithmic approaches discussed in previous
sections (Pearl 2014). Although a full discussion of these
extensions is beyond the intended scope of this review, it is
worth recognizing that (a) Detecting and quantifying causal
C–R relations in populations stops well short of the mechanis-
tic explanations addressed by advanced causal discovery
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algorithms; but (b) The framework of information-based
causal inference, including causal graphs (e.g. causal Bayesian
Networks), conditional independence tests, and conditional
dependence relationships quantified by partial dependence
plots, can be extended to address explanation and descrip-
tion of causal pathways and mechanisms.

A traditional approach to elucidating causal pathways in
epidemiology within a potential outcomes framework is
causal mediation analysis. For example, Imai et al. (2011) pre-
sent algorithms for estimating the “indirect effect” of an
exposure or treatment variable on an outcome or response
variable that is transmitted via an observed mediator, as well
as for estimating the “direct effect” transmitted via other
pathways not involving that mediator. They note that, as
with other potential outcomes analyses, their estimation pro-
cedures require strong, unverifiable assumptions.” As
explained by Keele et al. (2015), “This gives causal mediation
analysis the character of observational studies, where con-
founding between [the mediator and potential outcomes]
must be ruled out ‘on faith’ to some extent.” However, they
make a constructive advance by presenting nonparametric
estimation and sensitivity analysis algorithms, implemented in
an R package, that quantify how large the errors introduced
by unobserved pretreatment confounders might be. The
problem of unobserved post-treatment confounders remains
open, however.

Despite considerable effort and ingenuity invested in
mediation analysis, many past applications are now widely
understood to be incorrect or misleading due to failure to
distinguish clearly between conditioning on values of varia-
bles and manipulating the values of those variables (Pearl
2014; Spirtes & Zhang 2016). For example, Pearl (2014) com-
ments that much mediation analysis, including “principal
stratification’s mishandling of mediation” and other technical
methods that he characterizes as products of “a century of
blunders and confusions,” stem from misguided efforts to use
conditioning on a particular value of a mediator as a proxy
for holding the value of a mediator fixed at that value.
This confuses “seeing” with “doing,” in Pearl’s evocative
terminology.

Even technically sophisticated algorithms developed and
used for mediation analysis and estimation of causal impacts
in recent decades, such as principal stratification analysis
(Frangakis & Rubin 2002; VanderWeele 2011), and G-estima-
tion of causal effects in the presence of time-varying con-
founding (Robins et al. 1992), do not overcome the
fundamental problem that conditioning on observed values is
quite distinct from setting those values (Pearl 2014). It is now
widely appreciated that effects estimated from mean differen-
ces in responses conditioned on different values of an expos-
ure need not coincide with the effects that would be caused
by changing exposure from one value to another. To the con-
trary, conditioning or stratifying on some variables can create
spurious C–R associations that have no causal interpretation.
Algorithms for determining which subsets of variables to con-
dition on to obtain unbiased estimates of direct causal effects
of exposure concentration on response when causal DAGs
are known have recently become available in special-purpose
causal analytics software (Textor et al. 2011; Textor 2015).

Conditioning or stratifying on variables without knowledge of
the correct DAG model can be misleading for predicting how
changing exposures would change outcomes; as previously
noted, observing that heart attack risks are higher among
elderly people with higher levels of aspirin consumption
would not warrant any causal conclusions about how chang-
ing aspirin consumption would change heart attack risks.

Attempts to stratify individuals to more clearly reveal the
effects that would be caused by changing exposures via path-
ways involving specified mediating variables do not solve the
problem that conditioning is not manipulation. Like other data
analysis strategies (such as matching, propensity scores, and
instrumental variables) that try to approximate randomized
assignments by conditioning on observed data, stratification
methods do not address the key point that statistical relation-
ships among observed levels of variables do not necessarily
reveal how changing one would change others. Some experts
have concluded that principal stratification “is of some use in
assessing ‘direct effects’ [but] it is not the appropriate tool
for assessing ‘mediation.’ There is nothing within the
principal stratification framework that corresponds to a meas-
ure of an ‘indirect’ or ‘mediated’ effect” (Vanderweele 2011).
Such assessments suggest that it is worthwhile to consider
other approaches to elucidating causal pathways and
mechanisms.

A complementary approach to causal explanation and pre-
diction of effects of future interventions emphasizes the oper-
ation of sequences of causal mechanisms within individuals
(Dash et al. 2013; Maldonado 2013). Causal discovery algo-
rithms can be applied to data from cells, signaling pathways,
biochemical and physiological processes, etc. within individu-
als (Faes et al. 2015; Schiatti et al. 2015; Lagani et al. 2016).
Paying careful attention to the temporal sequences in which
different observed variables respond to an exogenous change
in the value of just one or a few of them can help to reveal
the structure of causal networks and estimate the magnitudes
and time delays in transmission of causal impacts among
time series variables (Mohammad & Nishida 2011; Schiatti
et al. 2015). Even without such exogenous shocks, quantifying
predictive relations among variables using information-theor-
etic algorithms allows causal network structure and estimates
of effect sizes and delays to be derived from time series data
on multiple causally related variables under fairly general
conditions (Sun et al. 2015). These approaches for elucidating
causal mechanisms and pathways within individuals, devel-
oped largely in artificial intelligence (Dash et al. 2013) and
systems biology (Lagani et al. 2016), complement the statis-
tical strategies discussed and illustrated in previous sections
for estimating differences in average responses across subpo-
pulations of individuals with different exposures. The informa-
tion-based algorithms on which we have focused can help
identify which variables might cause which others and show
the shape and magnitude of C–R relations in partial depend-
ence plots, but additional algorithms can also help to quan-
tify the timing of transmission of causal information among
variables, adding further resolution to the description of
causal processes (ibid).

Methods of causal inference that focus on explanatory
mechanisms can also strongly complement black-box
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statistical causal analysis by allowing valid causal conclusions
to be drawn from studies of relatively few individuals if the
studies suffice to elucidate the mechanisms of pathogenesis.
Once it is understood how an exposure causes a response,
this understanding can be used to make predictions and to
generalize beyond the specific individuals and experimental
or clinical conditions used to gain the initial understanding.
For example, the discovery that smoking induces chronic
unresolved inflammation in the lungs of susceptible smokers,
followed by increased cell death and regenerative hyperplasia
of the alveolar epithelium, provides a possible mechanistic
basis for understanding (or, if it were not already known, pre-
dicting) that smoking will also increase risk of chronic
obstructive lung disease (COPD) and lung cancer in these
smokers (Cox 2011). This causal prediction could be arrived at
without the need to study changes in COPD and lung cancer
in large populations over time as smoking habits change.
Similarly, suppose that it is known from toxicological and
clinical data that inhalation of long, thin amphibole asbestos
fibers increases repetitive injury of mesothelial tissue, result-
ing in (a) localized inflammation and release of TNF-a from
alveolar macrophages attracted to the site of tissue injury
and inflammation; and (b) upregulation of the expression of
TNF-a receptors on mesothelial cells at the site, thus inducing
mesothelial cells with DNA damage to survive and proliferate
(via an NF-jB signaling pathway) instead of undergoing
apoptosis and being safely removed (Yang et al. 2008). Such
mechanistic knowledge, when available and correct, can be
used to explain and predict health risks, such as the relatively
high relative potency of amphibole fibers in causing malig-
nant mesothelioma compared to the lower potency of cleav-
age fragments and mineral particles that do not have these
biological activities (Bernstein et al. 2013). Conversely, mech-
anistic understanding can also help to identify when epi-
demiological associations are unlikely to be causal. For
example, for PM2.5, Green et al. (2002) suggest that health
effects attributed to PM2.5 exposure were unlikely on toxico-
logical grounds to be caused by PM2.5 exposure, because
most PM2.5 lacks the potency needed to induce such effects
at realistic exposure concentration levels. Thus, mechanistic
understanding can complement epidemiological data in
showing how and why some exposures cause adverse effects
while others do not.

Unresolved ambiguity and geographic heterogeneity of
PM2.5 exposure metrics and unresolved negative studies

A familiar but important limitation of efforts to quantify C–R
functions for PM2.5 is that “PM2.5” does not denote a well-
defined, unique substance. Instead it refers to a heteroge-
neous collection of fine particulate matters. This raises the
possibility that PM2.5 in one location might exert toxic effects
while PM2.5 in a different location might not, simply because
of differences in the composition of PM2.5 between the two
locations. In this case, the concept of a causal C–R function
that can be estimated from one or more data sets and then
applied to estimate health benefits from reducing PM2.5 at
other locations fails not because of such subtleties as that
historical C–R associations are not valid predictive models,

but simply because the same value of C is likely to have dif-
ferent meanings in different locations, measuring different
things, and hence having different effects on R. Under such
conditions, the existence of a single predictively useful C–R
function for PM2.5 should not be expected.

There is empirical support for this concern, as well as a
sub-literature that speculates about which specific compo-
nents of PM2.5 might exert adverse health effects. For occu-
pational exposures to a specific form of particulate matter,
carbon black, Dell et al. (2006) applied standardized mortality
ratio (SMRs) and Cox Proportional hazards regression model-
ing to quantify C–R association between lung cancer and
respiratory disease mortality and cumulative inhalable carbon
black exposure among over 6000US carbon black workers.
They found that no consistent C–R association between
cumulative exposure to inhalable carbon black and respira-
tory disease mortality. On the public health side, Chay et al.
(2003) “found that [1970 Clean Air Act] regulatory status is
associated with large reductions in [total suspended particu-
lates] pollution but has little association with reductions in
either adult or elderly mortality” in the United States; the
authors interpreted these negative findings cautiously, noting
limitations in their study. Building on this work, Obenchain
and Young (2017) concluded that reducing air pollution did
not reduce deaths. Young and Xia (2013) found that there is
geographic heterogeneity in air quality-mortality associations
across the United States, with no effect of PM2.5 on life
expectancy in the western United States. Young and Xia
(2013) and Krstic (2013) both critically re-analyze previous
reports associating PM2.5 with reduced life expectancy in the
United States and highlight the importance of adequate con-
trol for potentially significant confounding factors and the
need to consider influential outliers, specific variable-attribut-
able effects, and geographical heterogeneity. Cox and
Popken examined longitudinal data on PM2.5 and mortality
rates in 100US cities and concluded that there were many
cities with statistically significant PM2.5-mortality associations,
mostly (but not entirely) positive, but no clear evidence that
PM2.5 is a Granger (predictive) cause of mortality. These stud-
ies looked for effects of PM2.5 reductions on mortality rates
on time scales of years to decades. On a time scale of days
to weeks, Zu et al. analyzed data from a natural experiment
in which forest fires sent daily average PM2.5 concentrations
above 60 micrograms per cubic meter in Boston and above
80 micrograms per cubic meter in New York for three days in
2002. They concluded that these spikes in PM2.5 did not pro-
duce “any discernible increase in daily mortality subsequent
to the dramatic increase in ambient PM2.5 levels.” On a wider
spatial scale, an innovative study by Greven et al. (2011) used
estimated “local coefficients” to try to reduce effects of
unmeasured confounders in a very large spatio-temporal
dataset (the Medicare Cohort Air Pollution Study, which
included individual-level information on time of death and
age on a population for over 18 million people between
2002 and 2006). They concluded that “Based on the local
coefficient alone, we are not able to demonstrate any change
in life expectancy for a reduction in PM2.5.” Outside the US,
on a time scale of years to decades, as previously discussed,
Dockery et al. (2013) reported that substantial (roughly
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45–70%) reductions in black smoke in Ireland were accompa-
nied by no detectable decreases in all-cause or cardiovascular
mortality rates, correcting earlier reports to the contrary. Such
negative findings clearly challenge the many assumption-
based calculations, such as those in Table 1, that confidently
predict that further reducing PM2.5 will substantially reduce
all-cause mortality rates.

More generally, the fact that PM2.5 has fallen dramatically
in many locations without detectably affecting mortality rates,
contrary to projections from global burden of disease (GBD)
and other models, invites explanation. One possible explan-
ation is that C–R functions estimated by regressing past levels
of mortality against past levels of PM2.5 exposure concentra-
tions are not valid predictive causal models. Another possible
explanation is that the composition of the PM2.5 exposures
(or of the exposed populations) in locations such as Boston,
New York, California and the western United States, Ireland,
and other sites of negative studies may differ from the com-
position of PM2.5 implicitly assumed in models that project
substantial mortality reduction benefits from further reducing
PM2.5. Since the composition of PM2.5 to which these mod-
els apply is unspecified, their relevance to PM2.5 found in
other specific locations is unknown. Without attempting to
further resolve issues of geographic and compositional het-
erogeneity, and consequent limitations on the applicability of
mortality reduction benefits calculations that assume that a
single C–R function applies everywhere, it seems clear that
such a universally applicable function might not exist simply
because C lacks a unique, consistent definition in terms of
causally relevant agents.

Generalizability of causal C–R functions across studies
and applications

Apart from the challenges that arise from aggregating dispar-
ate substances under the heading “PM2.5,” a more general
issue for C–R functions is generalizability across studies – that
is, the extent to which a C–R function estimated under one
set of circumstances can be applied to others to correctly
predict the impacts on responses of changing exposure con-
centrations. This problem has been studied since the 1960s in
the quasi-experimental design literature on how to establish
the external validity of causal inferences (Shadish et al. 2002).
It has been addressed more recently within the information-
based causal analytics framework of directed acyclic graphs
(DAGs), conditional independence relationships, and condi-
tional probability tables (e.g. Lee & Honavar 2013;
Bareinbaum & Pearl 2013). As a simple example, consider a
causal DAG model X ! Y  Z in which X is a manipulable
decision variable such as exposure concentration, Y is a
health variable of interest, such as mortality rate, and Z is
a vector of covariates, such as age and sex. Suppose that a
unique causal model specifying the probability distribution
for Y values given X and Z values can be identified and esti-
mated from some mix of observational and experimental or
clinical data, yielding a conditional probability table (CPT)
specifying the conditional probability of each possible value
of Y for each set of input values for X and Z. This CPT can be
denoted in symbols by Pr(Y¼ y j X is set to value x, Z has

value z) (or, more briefly, by Pr(y j do(x), z)), standing for the
conditional probability that Y has value y given that X is set
to value x and that Z has value z. (The use of “do” to distin-
guish variables whose values are set by a decision-maker
from variables whose values are only observed is due to
Pearl.) If this causal model is correct, and Y indeed depends
only on X and Z, then the CPT can be transported to new set-
tings in which the population distribution of covariate values
is quite different from their distribution in the study or stud-
ies used to estimate the CPT. The CPT then represents a
(probabilistic) causal law that should be invariant across set-
tings, even though the joint frequency distribution of covari-
ates, and hence the local C–R function for the average value
of Y as a function of x, may differ in different populations.

In general, the C–R function E(Y j do(x)) will be different
for different distributions of Z, implying that no single C–R
function holds in different settings, simply because the C–R
function estimated for one population reflects the distribution
of covariates in that population as well as the causal law that
determines risk from x for any given set of covariate values.
Thus, contrary to widespread current practice, it would be
misguided to believe that C–R effects estimated from one
study can or should be applied unchanged elsewhere, or that
effects of pollutants on human health estimated for a specific
population and set of conditions in one country, such as
China, “can be applied to other countries, time periods, and
settings” (Chen et al. 2013). Yet, conditioning appropriately
on Z provides so-called transport formulas for deriving the
correct C–R function for a new population from the previ-
ously estimated CPT and the joint distribution of Z in the
new population, if both are known. (Specifically, for our sim-
ple example, the probability that the mortality rate for a ran-
domly selected individual will become y if the pollutant
concentration is set to x is given by the probability identity:
Pr(y j do(x))¼RzPr(y j do(x), z)Pr(z), where Pr(z) is the prob-
ability or relative frequency of covariates z in the target
population for which causal impacts are to be estimated and
Pr(y j do(x), z) is the causal CPT, which may have been devel-
oped from previous studies elsewhere. The population C–R
function for this target population is then given by the iden-
tity E(Y j do(x))¼RyPr(y j do(x))�y.) Various important general-
izations of this idea have been worked out in the recent
epidemiological (Hernan & Vandeweele 2011; Schwartz et al.
2011) and computer science literatures, including methods
for using causal relationships estimated from experiments
and observations in several different source environments to
estimate causal impacts of interventions from observational
data for a target environment, when this is possible, and
otherwise determining that it is not possible (Hernan &
Vanderweele 2011; Bareinbaum & Pearl 2013; Lee & Honavar
2013). However, such transport formulas have not been
developed and applied for causal C–R functions in the PM2.5
health effects literature to date, making it inappropriate to
apply (i.e. transport) C–R functions estimated from studied
populations to different populations, as encouraged by pro-
grams such as BenMAP (US EPA 2015). This appears to be an
area where simply being aware of, and applying, modern
causal analytics methods such as transportability conditions
and formulas might be able to improve epidemiological and
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public health risk assessments practice relatively quickly by
enabling practitioners to adjust estimated causal functions to
apply to different locations. On the other hand, to properly
adjust for differences in distributions of response-related
covariates across populations, considerable relevant biological
knowledge may be necessary to identify the covariates that
should enter the transport formulas, and enough data on the
joint distributions of those covariates in the source and target
populations must be available for the transport formulas to
be applied.

Consideration of effects on different time scales

Our illustrative analyses used months as the time scale,
essentially asking whether knowing average daily PM2.5
within a month helps to predict average daily mortality that
month after conditioning on other variables such as tempera-
ture. Since daily values of the variable are available, the pres-
ence of effects on shorter time scales than months can also
be examined. Cox (2016) reports results for the South Coastal
Air Quality Management District based on analysis of daily
data. Similar to the results for monthly data in the previous
section, Bayesian Network, classification tree, and partial
dependence plot analyses of daily again show that daily mor-
tality rates depend on temperature but not on PM2.5.
Including values of variables lagged by 1–7 days as predictors
shows that today’s elderly mortality depend not only on
recent elderly mortality rates in the preceding 3 days (auto-
correlation), but also on recent daily minimum temperatures
(over at least the most recent 4 days). Elderly mortality does
not depend directly on current or lagged PM2.5 values, but
PM2.5 values are autocorrelated and lagged values of PM2.5,
maximum relative humidity, and daily minimum temperature
depend on each other (over a window of at least 4 days).
These findings with daily resolution of the time scale confirm
that elderly mortality is found to depend directly on daily
minimum temperature but not directly on PM2.5 (same-day
or lagged). The additional resolution from using daily data
reveals transient autocorrelations and cross-correlations
among these variables, and also relative humidity, over a
period of a few days that are not apparent at the monthly
level of aggregation, suggesting the importance of control-
ling for several days of temperature and humidity as con-
founders of the PM2.5-elderly mortality association. With time
steps of months, these more detailed transients can be
ignored. However, the existence of complex transients and
interactions among variables on a time scale of days to
weeks highlights the importance of carefully choosing time
windows for case-crossover designs or dynamic regression
models, since simply comparing exposure levels on nearby
days with and without a death (e.g. Schwartz 2004) may mis-
attribute to differences in daily exposure concentrations
effects that are actually caused by lagged values of other var-
iables that are correlated with such concentrations. For the
Boston data, there are many days with missing data, espe-
cially in earlier years, so no analogous analyses are possible.
Aggregating data to the monthly level resolves this problem,
as the vast majority of days in each month have data from
which monthly average values of all variables can be

calculated. In addition, as previously noted, time steps of
months may bring out more clearly than daily data the last-
ing effects of changes in pollution levels, temperature, or
other variables on average daily mortality rates (Laden et al.
2006).

No discussion of the foundations and deep grounding of
methods

Our review and application of information-based causal infer-
ence algorithms has deliberately emphasized principles and
algorithms that have led to high performance in competitive
benchmarking tests, while skipping over centuries of previous
work. As noted by Pearl (2014), “Traditional statisticians fear
that, without extensive reading of Aristotle, Kant and Hume,
they are not well equipped to tackle the subject of causation,
especially when it involves claims based on untested
assumptions.” Even the relatively short history of computa-
tional approaches to causal analysis of data, which is only
about a century old, can be intimidating. Some of its key
milestones are as follows:

� 1920s: Path analysis was introduced and developed by
geneticist Wright (1921). This was the first approach to
use directed acyclic graph (DAG) models in conjunction
with quantitative analysis of statistical dependencies and
independencies to clarify the distinction between correl-
ation and causality. They have been so used ever since.
Although Wright’s path analysis was restricted to linear
models, it can be seen as a forerunner of the Bayesian
networks introduced some 70 years later, which general-
ize path coefficients to conditional probability tables
(CPTs). These allow for non-parametric estimation of arbi-
trary (possibly non-linear) probabilistic dependencies
among variables by specifying the conditional probabil-
ities for the possible values of a variable, given each com-
bination of values for the variables that point into it in a
DAG model. (In practice, this conditional probability dis-
tribution or table at a node of a DAG model can be rep-
resented relatively efficiently as a classification tree for
the node’s value, given the values of its parents (inputs)
in the DAG, rather than by explicitly listing all possible
combinations of input values (Frey et al. 2003).) Path ana-
lysis and closely related linear structural equations mod-
els (SEMs) were extensively developed by social scientists
and statisticians in the 1960s and 1970s and became a
primary tools of causal analysis in the social sciences in
those decades (Blalock 1967; Kenny 1979).

� 1950s: Structural equations models (SEMs) were developed
as tools for causal analysis. For example, polymath and
Nobel Laureate Herbert Simon defined causal ordering of
variables in systems of structural equations (Simon 1953)
and applied conditional independence and exogeneity
criteria for distinguishing between direct and indirect
effects and between causal and spurious correlations in
econometrics and other fields (Simon 1954).

� 1960s: Quasi-experiments were introduced, standard
threats to valid causal inference in observational studies
were identified and listed, and statistical designs and
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tests for overcoming them in observational studies were
devised, most notably by social statisticians Campbell
and Stanley (1963). These methods were extended and
applied to evaluation of the success or failure of many
social and educational interventions in the 1960s and
1970s, leading to a large body of techniques for program
evaluation. The methods of data analysis and causal ana-
lysis developed for quasi-experiments, which consist
largely of enumerating and refuting potential non-causal
explanations for observed associations, have subse-
quently been extensively applied to “natural experiments”
in which changes affect a subset of a population, allow-
ing a quasi-experimental comparison of changes in
responses in the affected subpopulation to contemporan-
eous changes in responses in the unaffected (control)
subpopulation. These methods make it unnecessary to
depend on already collected data on historical C and R
levels, and instead allow potentially valid causal infer-
ences about how changes in C change R (Rich 2017).

� 1965: Hill considerations for causality introduced. In 1965,
Sir Austin Bradford Hill, expressing doubt that any valid
algorithmic approach for causal discovery could exist,
introduced a set of “considerations” to help humans
make judgments about causality based on associations
(Hill 1965). These considerations stand apart from the rest
of the history of causal analysis methods, being neither
greatly influenced by nor greatly influencing the technical
developments that have led to successful current algo-
rithms for causal discovery and inference. They have
been enormously influential in epidemiology and regula-
tory risk assessment, however, where they have encour-
aged efforts to use judgment to interpret associations
causally. Some attempts have been made to link Hill’s
considerations to counterfactual causality (H€ofler 2005),
but they play no role in current causal analysis algo-
rithms, and the rates of false positives and false negative
causal conclusions reached with their help have not been
quantified. In Hill’s judgment, “What they can do, with
greater or less strength, is to help us to make up our
minds on the fundamental question – is there any other
way of explaining the set of facts before us, is there any
other answer equally, or more, likely than cause and
effect?” As a psychological aid to help epidemiologists,
risk assessors and regulators to make up their minds,
Hill’s considerations have proved effective, but their per-
formance as a guide for drawing factually correct conclu-
sions about causality – especially manipulative causality –
from observational data is less clear. Further discussion
and synthesis of the Hill considerations with the informa-
tion-based approaches to causality discussed earlier
appears to be worthwhile, but is beyond the scope of
this review.

� 1970s: Conditional independence tests and predictive caus-
ality tests for time series were developed to identify pre-
dictive causal relationships between time series, most
notably by Nobel Laureate econometrician Clive Granger
and colleague Christopher Sims, building on earlier ideas
by mathematician and electrical engineer Wiener (1956).
Granger (or Granger-Sims) tests for predictive causality

have been extended to multiple time series and applied
and generalized by neuroscientists analyzing observations
of neural firing patterns in the brain (Friston et al. 2013;
Wibral et al. 2013; Furqan & Siyal 2016).

� 1980s: Counterfactual and potential outcomes techniques
were proposed for estimating average causal effects of
treatments in populations, largely by statistician Donald
B. Rubin and colleagues, building on work by statistician
Jerzey Neyman in 1923. Over the course of four decades,
specific computational methods put forward in this
framework to quantify average causal effects in popula-
tions, usually by trying to use observations and assump-
tions to estimate what would have happened if
treatments or exposures had been randomly assigned,
have included matching on observed covariates (Rubin
1974), Bayesian inference (Rubin 1978), matching with
propensity scores (Rosenbaum & Rubin 1983), potential
outcomes models with instrumental variables (Angrist
et al. 1996), principal stratification (Zhang & Rubin 2003),
and mediation analysis (Rubin 2004). These methods
have been influential in epidemiology, where they have
been presented as suitable for estimating average effects
caused by treatments or interventions. But they have also
been criticized within the causal analysis community as
being needlessly obscure, reliant on untestable assump-
tions, and prone to give biased, misleading, and paradox-
ical results in practice, in part because they do not
necessarily estimate genuine (manipulative) causal effects
(e.g. Pearl 2009a). From this perspective, the useful contri-
butions of the potential outcomes framework can be sub-
sumed into and clarified by methods of structural
equations modeling (Pearl 2009b).
The 1980s also saw the introduction of classification and

regression trees (CART) methods (Breiman et al. 1984). These
would eventually provide nonparametric tests for conditional
independence, useful for learning Bayesian network structures
from data (Frey et al. 2003). They also provided the base non-
parametric models for randomForest ensembles and related
non-parametric ensemble algorithms now widely used in
machine learning (Furqan & Siyal 2016).

� 1990s: Probabilistic graphical models were developed in
great detail and given clear mathematical and conceptual
foundations (Pearl 1993). These included Bayesian net-
works and causal graph models, together with inference
algorithms for learning them from data and for using
them to draw causal inferences and to estimate the sizes
of effects caused by interventions. These methods are
most prominently associated with the Turing Award-win-
ning work of computer scientist Judea Pearl and his
coauthors. They grew out of the intersection of artificial
intelligence and statistics. They provide a synthesis and
generalization of many earlier methods, including struc-
tural equations modeling (both linear and nonlinear),
probabilistic causation, manipulative causation, predictive
(e.g. Granger) causation, counterfactual and potential out-
comes models, and directed acyclic graph (DAG) models,
including path analysis. Conditional independence tests
and quantification of conditional probabilistic
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dependencies play key roles in this synthesis, as set forth
in landmark books by Pearl (2000) and Koller and
Friedman (2009). The full, careful development of prob-
abilistic graphical models and algorithms created what
appears to be a lasting revolution in representing, under-
standing, and reasoning about causality in a realistically
uncertain world.

� 2000–Present: Causal discovery and inference algorithms
for learning causal DAG models from data and for using
them to draw causal inferences and to quantify or place
bounds on the sizes of impacts caused by different inter-
ventions have been extensively developed, refined,
tested, and compared over the past two decades.
Important advances included clarifying which variables in
a DAG model must and must not be conditioned on to
obtain unbiased estimates of causal impacts in known
DAG models (Shpitser & Pearl 2008; Textor 2015), as well
as transportability formulas for applying causal relation-
ships discovered and quantified in one or more learning
settings to a different target setting (Hernan &
Vanderweele 2011; Bareinbaum & Pearl 2013; Lee &
Honavar 2013). Recent years have also seen substantial
generalizations of earlier methods. For example, transfer
entropy, a nonparametric generalization of Granger caus-
ality, quantifies the rates of directed information flows
among time series variables. Introduced by physicist
Schreiber (2000) and subsequently refined and extended
by workers in computational finance and neuroscience
(Wibral et al. 2013), transfer entropy and closely related
methods appear to be promising for creating algorithms
to discover causal DAG structures and quantitative
dependency relationships and time lag characteristics
from observations of multiple time series.

Even such an abridged list of milestones makes clear that
causal analytics is now a large and deep field with a host of
interrelated technical concepts and algorithms supported by
a confluence of insights and methods from statistics, social
statistics and program evaluation, electrical engineering, eco-
nomics and econometrics, physics, computer science, compu-
tational finance, neuroscience, and other fields. Any brief
survey must therefore be relatively superficial; full treatments
run into thousands of pages (e.g. Koller & Friedman 2009),
and even documentation for R packages implementing the
key ideas can be hundreds of pages.

This deep grounding of current information-based causal
analytics methods and algorithms, such as those in CAT, in
nearly a century of computational methods backed by centu-
ries of philosophizing about causality might well inspire a
prudent humility (Pearl 2014). Yet, for the practitioner with
limited time and a need to draw sound causal inferences
from data, two relatively recent developments make even
superficial understanding of key ideas and software packages
highly useful. The first is that many formerly distinct causal
analysis methods have now been synthesized and unified
within the framework of information-theoretic methods and
directed acyclic graphs. This framework brings together ideas
from potential outcomes and counterfactual causation, pre-
dictive causality, DAG modeling, and manipulative causality

(Pearl 2000, 2010). The second is the success of the object-
oriented software paradigm in platforms such as R and
Python. Modern software enables and encourages encapsula-
tion of technical implementation details so that only key
ideas and behaviors of software objects need be understood
to use them correctly. This allows users with only a superficial
understanding of exactly what a software package does and
how it works to use it appropriately to do valuable tasks. For
example, a user who understands only that causes must be
informative about their effects, and that this can be indicated
graphically by arrows between variables showing which ones
are identified as being informative about each other and
which are conditionally independent of each other, can use
this limited understanding to interpret correctly the results of
sophisticated algorithms such as those in the CAT package.
As a practical matter, making tools such as Bayesian network
learning algorithms, classification trees, and partial depend-
ency plots widely available and easy to apply can comple-
ment insights from regression-based and other associational
and counterfactual methods to reveal and quantify potential
causal relationships in observational data.

Summary and conclusions

Our critical review of the literature on concentration-response
(C–R) relations for fine particulate matter and mortality has
identified the following challenges:

� C–R functions that describe historical associations do not
necessarily predict how changing C would change R. This
is partly because associations may not represent manipu-
lative causal relationships, as when positive associations
between baby aspirin consumption and heart attack risk,
or between nicotine-stained fingers and subsequent risk
of lung cancer, do not allow a valid prediction that
reducing one would reduce the other.

� Almost all of the existing literature on PM2.5-mortality
C–R functions deals with associations and not with caus-
ality (Wang et al. 2016).

� The few papers that do attempt to model causality in
C–R relations for PM2.5 exposure and mortality fail to dis-
tinguish among counterfactual, predictive, and manipula-
tive causality. Most of these papers follow a
counterfactual approach that relies heavily on unverified
modeling assumptions about unobserved potential out-
comes. This amounts to assuming, rather than showing,
that associations in regression models can be interpreted
causally. Arguably, manipulative causation should be the
gold standard for discussions of causality and the public
health effects that would be caused by changing PM2.5
exposures. Although even state-of-the-art causal inference
algorithms cannot definitively establish manipulative
causality from observational data, they can identify sev-
eral measures of predictive causality (Granger causality,
information relations in DAG models, and so forth) that
provide a valuable screen for evidence of potential
manipulative causation.

� A large literature on modern causal inference algorithms
for observational data has yet to be applied to C–R
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modeling. The most successful methods in this literature,
as assessed in competitive challenges, emphasize the
information criterion (a necessary but not sufficient con-
dition) that causes should be informative about their
effects. Changes in causes should also be informative
about changes in their effects. These principles can be
applied to observed data using freely available R pack-
ages for predictive analytics. Nonparametric CART trees
used to detect and quantify information about responses
provided by exposure concentrations are among the
most successful and most mature current algorithmic
approaches to computational causal inference.

� Applying these methods to publicly available data from
the Northeast (Boston) and Southern California (Los
Angeles) shows that C–R associations found in Boston do
not hold in the SCAQMD air basin. Quite significant (e.g.
2-fold) changes in average PM2.5 concentrations do not
help to predict changes in average elderly mortality rates
in either location, at least on the time scales of monthly
averages separated by a one-year lag used in our
example analyses.

Well-defined causal C–R functions do not necessarily exist
for PM2.5 and elderly mortality, at least on the time scales
considered. Different statistically significant associations hold
in different areas, but they do not necessarily correspond to
the theoretical construct of a C–R function that can be esti-
mated at one location and applied to another to approximate
how changes in concentrations would affect changes in pub-
lic health. It seems highly desirable for future work to distin-
guish more clearly among statistical association, predictive
causal, and manipulative causal C–R functions than past
research has done. The fundamental premise that C–R func-
tions exist that can predict the public health effects caused
by reductions in pollutant concentrations needs to be care-
fully reexamined and tested, as it does not appear to hold in
general.
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