Health Benefit Assessment: Methods for 2012 AQMP Update

Prepared for:
STMPR AG for the SQ AQMD 2012 AQMP

Prepared by:
Leland Deck
Stratus Consulting
July 19, 2012
6 Critical Components of a Health and Valuation Analysis

- Air Quality Modeling
- Population Forecasts
- Health Effect Categories ("Endpoints")
- Concentration-Response Risk Functions
- Public Health Data Forecasts
- Health Effect Valuation Functions
Goals of Revising Methods

- Design analysis to support 2012 AQMP
- Improve use of South Coast specific information
- Reflect new health research and understanding of air quality health issues
- Reflect new economic research and understanding of valuing health risks
- Use more recent data
- Improve communication of methods and results
Changes in Air Quality Modeling

- Air Quality Model
 - 2012 using CMAQ (‘07 used CAMx)
 - 4 km x 4 km grid system (‘07 used 5 x 5)
 - Adjusted to 2008 monitors (‘07 used ‘05)
Changes to Population Forecasts

- Forecasts for 2014, 2023
 - Based on 2005-2009 American Community Survey (ACS) population
 - REMI forecasts for 21 sub-County regions

- Population (by age group) is allocated to 4km x 4km grid based on 2010 Census
 - Age specific population density at 2010 Census Tract level
Selecting Health Effects to Quantify

- PM2.5 and NO2
 - ‘12 AQMP targets these 2 pollutants
- Must have both C-R function, valuation function and any required public health data (e.g., baseline incidence rates)
- Must be based on published, peer reviewed literature
- Must have methods used specifically reviewed and approved by an external peer review committee
Quantified PM2.5 Health Effects

<table>
<thead>
<tr>
<th>Health Effect</th>
<th>In 2007 AQMP?</th>
<th>Recommended for 2012?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality (adult and infant)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Chronic Bronchitis</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Acute Myocardial Infarction</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Acute Respiratory Symptoms</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Work Loss Days</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hospital Admissions, Cardiovascular</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hospital Admissions, Respiratory</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Acute Bronchitis</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Upper Respiratory Symptoms</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lower Respiratory Symptoms</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Emergency Room Visits, Respiratory</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Asthma Exacerbations (“attack”)</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>
Quantified NO2 Health Effects

<table>
<thead>
<tr>
<th>Health Effect</th>
<th>In 2007 AQMP?</th>
<th>Recommended for 2012?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory Symptoms</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Hospital Admissions, Respiratory</td>
<td>✗</td>
<td>??</td>
</tr>
<tr>
<td>Emergency Room Visits, Respiratory</td>
<td>✗</td>
<td>??</td>
</tr>
<tr>
<td>Asthma Exacerbations (“attack”)</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>
Mortality C-R Functions in ‘07 AQMP

- 2007 used an average from 3 studies
 - Pope et al. (2002)
 - National ACS cohort RR=1.06
 - Laden et al. (2006)
 - Harvard 6-Cities RR=1.15
 - Jerrett et al. (2005)
 - Los Angeles area data from ACS
 - RR = 1.158
Candidate Mortality C-R Functions for '12 AQMP

- Krewski et al. (2009)
 - National ACS cohort RR=1.06
- Laden et al. (2006) RR=1.15
- Roman et al. (2006, 2008) expert elicitation
 - Use consensus function per EPA 812 Study. RR \approx 1.11
- Krewski et al. (2009) Los Angeles function
 - Subset of ACS cohort study. RR = 1.197
Why Krewski et al. (2009) LA study?

- Expands on Jerrett et al. (2005)
- Based on PM2.5 monitors from 2000
 - 24 FRM monitors in LA metro area
 - Includes 6 “super site” species monitors
 - By using 2000 monitors estimation is based on PM changes resulting from targeted PM2.5 reductions
- Used by EPA in the 2010 Risk Assessment (part of PM2.5 process)
Public Health (Incidence Data)

- **Baseline Mortality Rates**
 - Based on 2006-2009 data
 - County and age specific forecasts to future years, consistent with Census estimates

- **Hospital Admission Rates**
 - Use California-specific rate
 - Limited set of LA-specific rates
Valuing Health Effects

- Economic Science preferred methods
- Willingness to Pay (WTP) based demand for risk reduction
- Local estimates
- Specific to age and source of risk

- Can’t Always Get What You Want
Reality of Valuation Functions

- Mixed methods
 - Do the best we can for each health effect
- WTP used for some
 - Mortality, mild morbidity symptoms
- Cost of Illness used for some
- Value of Time Lost used for some
- Lost income used for some
- MIXED MODE IS COMMON
- Local WTP is rare; local COI & income exist
What Changes for 2012 Valuations?

- EVERYTHING
- Analytical date of matters
- Basis year of ‘12 AQMP benefits values = 2005
- 2 implications of basis year
 - Inflation. All analysis based on 2005 prices
 - Income. Will be based analytical year
 - WTP increases with real income
 - Income elasticity of demand
 - Real income growth: 2010 federal estimates
Valuing Fatal Risk Reductions
“Value of Statistical Life” or VSL

- VSL is misnomer, but entrenched in literature
- Concept is WTP for a small reduction in a fatal risk
 - E.g., WTP for a 10^{-6} risk reduction in probability of dying is in range of $\$1$ to $\$10$
- If 1 million people will experience a 10^{-6} risk reduction
 - One expected death (or “statistical death”)
 - Sum of all WTP = $\$1$ to $\$10$ million = VSL
VSL in 2007 AQMP Based on Then Current EPA Methods

- EPA always bases VSL on range of values from published studies
- In 2004 – 2006 time EPA commissioned 3 meta-analysis literature reviews
- In simple terms, EPAs decision was to use:
 - Middle study as mean of VSL distribution
 - Highest study as 75 percentile
 - Lowest study as 25 percentile
 - Estimate a normal distribution
- ~$5.5 million in 2000 prices and income
In 2009 EPA Changed Their VSL Policy

- New Administration established formal policy
 - VSL used in previous years was “repealed”
 - Never formally peer reviewed by full suite of EPA science advisors nor adopted in writing by OMB or EPA (always “interim”)
 - Therefore EPA would use the previous VSL that had been formally reviewed and adopted in OMB and EPA Guidance
 - Call that the “2000 VSL Policy”
The 2000 VSL Policy

- Based on Meta-Analysis done by Viscusi (1992)
 - Selected 26 studies
 - 20 wage based studies
 - 6 stated preference studies
 - Majority of studies from ‘80s, few from ‘70s
- EPA estimated a skewed (Weibull) distribution that best fit the 26 data points.
- VSL = $6.3 million in 2000 prices and income
Issues with Current EPA VSL Policy

- Few stated preference studies
- Both wage hedonic and stated preference studies methods have changed a lot
- Clear trend in recent stated preference studies have found lower values since ‘80s
- Age of studies makes adjusting for inflation and real income growth dominate the estimates of values in 2010 or future
- Viscusi no longer recommends his 1992 paper as the basis of VSL for policy purposes
Recommendation for 2012 AQMP

- Do not select VSL based on current EPA policy
- Base VSL on one of the meta-analysis studies from mid-2000’s set
 - Kochi et al. (2006). An empirical Bayesian meta-analysis
 - Reviewed 196 VSL studies, selected 40
 - Included 60 data sets (ie., 60 estimates)
 - Published between ‘74 and ‘2000
 - Included 42 wage and 18 stated preference studies
Kochi et al. (2006), continued

- Mean estimate of their preferred model is
 - 5.4 million (s.e. = 2.4 million)
 - 2000 prices and incomes
- This is a Bayesian average of all studies
 - Wage hedonic are higher
 - Wage mean = 9.4 million
 - US alone wage is lower: 8.5 m
 - UK wage VSL = 22.6
 - Stated preference mean = 2.8 million