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a b s t r a c t

Air pollution epidemiological studies suggest that elevated exposure to fine particulate matter (PM2.5) is
associated with higher prevalence of term low birth weight (TLBW). Previous studies have generally
assumed the exposure–response of PM2.5 on TLBW to be the same throughout a large geographical area.
Health effects related to PM2.5 exposures, however, may not be uniformly distributed spatially, creating a
need for studies that explicitly investigate the spatial distribution of the exposure–response relationship
between individual-level exposure to PM2.5 and TLBW. Here, we examine the overall and spatially
varying exposure–response relationship between PM2.5 and TLBW throughout urban Los Angeles (LA)
County, California. We estimated PM2.5 from a combination of land use regression (LUR), aerosol optical
depth from remote sensing, and atmospheric modeling techniques. Exposures were assigned to LA
County individual pregnancies identified from electronic birth certificates between the years 1995-2006
(N¼1,359,284) provided by the California Department of Public Health. We used a single pollutant
multivariate logistic regression model, with multilevel spatially structured and unstructured random
effects set in a Bayesian framework to estimate global and spatially varying pollutant effects on TLBW at
the census tract level. Overall, increased PM2.5 level was associated with higher prevalence of TLBW
county-wide. The spatial random effects model, however, demonstrated that the exposure–response for
PM2.5 and TLBW was not uniform across urban LA County. Rather, the magnitude and certainty of the
exposure–response estimates for PM2.5 on log odds of TLBW were greatest in the urban core of Central
and Southern LA County census tracts. These results suggest that the effects may be spatially patterned,
and that simply estimating global pollutant effects obscures disparities suggested by spatial patterns of
effects. Studies that incorporate spatial multilevel modeling with random coefficients allow us to identify
areas where air pollutant effects on adverse birth outcomes may be most severe and policies to further
reduce air pollution might be most effective.
& 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Extensive evidence indicates that prenatal exposure to outdoor
air pollution is associated with risk of term low birth weight
(Brauer et al., 2008; Fleischer et al., 2014; Ghosh et al., 2013, 2012;
Inc. This is an open access article u
Hyder et al., 2014; Padula et al., 2012; Parker et al., 2011; Ponce,
2005; Proietti et al., 2013; Ritz and Wilhelm, 2008; Shah and
Balkhair, 2011; Stieb et al., 2012; Wilhelm et al., 2011; Wu et al.,
2011). While TLBW contributes to racial–ethnic and socioeconomic
health disparities in the United States, air pollution is thought to
be an important place-based factor in the complex geography of
and susceptibly to TLBW (Jerrett and Finkelstein, 2005; Morello-
Frosch and Shenassa, 2006). It is reasonable to consider, however,
that air pollution exposure–response effects on adverse birth
outcomes, such as TLBW, vary spatially within an urban setting.
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First and foremost, air pollutant mixtures or components of PM
air pollution can be autocorrelated spatially within urban environ-
ments – depending on local-scale air pollution sources, the intensity
of emissions, and meteorology (among other factors) (Hajat et al.,
2013; Molitor et al., 2011; Su et al., 2012). As a result, the intrinsic
toxicity of PM2.5 mixtures is likely to be spatially dependent. For
instance, Laurent et al. (2014) found that various components and
sources of fine PM air pollution, which exhibit strong spatially
varying characteristics, produced statistically significant gradients in
PM-related TLBW risk in LA County. Similarly, Wilhelm et al., (2011),
found that the exposure–response between PM2.5 and TLBW varied
by PM2.5 source type (e.g. gasoline versus geologic sources) within
LA County. Furthermore, Pedersen et al. (2015) studied eight Eur-
opean birth cohorts and found that the exposure–response between
PM2.5 was dependent on its chemical composition, with OR esti-
mates for sulfur PM2.5 of 1.24, compared to 1.08 for overall PM2.5.
Such local-scale intra-urban differences in particulate air pollution
exposure and health effects patterns may therefore lead to in-
equalities with regard to PM-related adverse birth outcome risks
(Baxter et al., 2007). Further, a wide range of contextual neighbor-
hood factors and individual factors that are spatially correlated, from
socioeconomic status (SES), demographics (i.e. racial segregation),
exposure to violence (Messer et al., 2006), access to healthy food
(Lane et al., 2008) or green space (Hystad et al., 2014), housing
characteristic, and psychosocial, may contribute to variations in
susceptibilities to air pollution that are not fully accounted for in
standard regression models relying on fixed covariate effects (Mor-
ello-Frosch and Shenassa, 2006). Few studies, however, have been
conducted to examine whether there is a spatial patterning – or a
"risk-scape" (Morello-Frosch and Shenassa, 2006) – for PM-related
birth outcomes. While previous health research has evaluated the
spatial dependency of PM-related chronic health effects such as
cardiovascular disease and asthma (Boehm Vock et al., 2014; Choi
et al., 2009; Fuentes et al., 2006; Jerrett et al., 2005; Krewski et al.,
2009; McConnell et al., 2010; Samoli et al., 2004; Shankardass et al.,
2009), no studies have modeled the spatial dependency of in-
dividual-level PM2.5 exposure–response relationships on birth
outcomes.

Several recent studies examined the spatial variation in PM2.5

effects on TLBW between different countries or between US states.
A large collaborative multi-site international study found a sub-
stantial degree of heterogeneity in estimates for entire pregnancy
exposure–response between study sites, despite the use of similar
exposure assessments and statistical models in the studies (Dad-
vand et al., 2013; Parker et al., 2011). Hao et al. (2015) found
substantial differences between states in the U.S. in terms of the
magnitude and direction of effects of PM2.5 on TLBW. Another
multi-state U.S. study also found that the size of exposure–re-
sponse estimates for PM2.5 and TLBW depended upon study site;
with odds ratios ranging from between 0.942 (95% CI: 0.817, 1.09)
in Utah to as high as 1.72 (95% CI: 1.55, 1.93) in New York state (per
10-unit increase in PM2.5 exposure) (Harris et al., 2014). Ad-
ditionally, Williams et al. (2007) demonstrated, through im-
plementation of a multilevel linear random coefficient model, that
adverse effects on average birth weight in a population varied by
census tract due to hazardous air pollution emitting industrial
sites. The observed statistically significant differences in effect size
between census tracts remained significant even after adjusting
for the number of hazardous sites per census tract, individual level
confounders, and contextually relevant census tract level con-
founding factors (Williams et al., 2007).

Despite the recent evidence suggesting that air pollution-re-
lated adverse effects on birth weight may vary spatially, no studies
have explicitly examined spatial variation in effects within a dense
metropolitan region such as LA county, which we are targeting in
our paper. Our guiding hypothesis is that modeling of the spatially
varying coefficients will show differences in TLBW according to LA
County census tracts and thus provide evidence for localized PM2.5

exposure–response. Specifically, the magnitude of effect will be
higher in some census tracts when compared to the global mean
exposure–response for all of urban LA County. Our approach goes
beyond the commonly employed estimation of an overall average
PM2.5 effect on birth weight and will allow us to describe a spa-
tially-patterned deviation from the average effects, thus pin-
pointing potential 'hotspots' within LA County where the magni-
tude and probability of PM2.5 effects are likely to be strongest.

In our paper we utilize an existing land use regression (LUR)
PM2.5 exposure model within a multi-level Bayesian framework;
implemented with spatially-dependent random coefficients. This
information may be useful from a policy perspective to create
targeted public health interventions for LA County.
2. Methods

2.1. Study population and birth outcomes

Data on infant birth weight were derived from electronic birth
certificates provided by the California Department of Public
Health, for LA County births between 1/1/1995 and 12/31/2006
(N¼1,522,084). The birth records provided information on ma-
ternal characteristics such as age, race/ethnicity, education, total
number of previous maternal births, and residential address, as
well as characteristics of the infant (abnormalities, birth season,
gestational age at birth, birth weight and baby sex). Human sub-
jects research was approved through the University of California,
Los Angeles' Office of the Human Subjects Protection Program, the
California Committee for the Protection of Human Subjects, and
the University of Southern California Office for the Protection of
Research Subjects. Similar to previous studies, we restricted the
dataset to singleton births with no recorded abnormalities (Ghosh
et al., 2013, 2012; Wilhelm et al., 2011). Additionally, we excluded
births with extreme gestational days (less than 140 days or greater
than 320 days), births that were not full term (o259 gestation
days), and births with birth weight less than 500 g or greater than
5000 g due to concerns about recording errors. For our final ana-
lyses, we further excluded births without complete information on
the full set of study covariates (n¼19,017). Finally, since we are
interested in estimating within-city spatial variation in PM2.5 ef-
fects, the spatial analysis further excluded rural sub-region of LA
County, thus leaving a final study population of N¼1,356,304. A
detailed description of methods for geocoding residential ad-
dresses are described elsewhere (Goldberg et al., 2008).

2.2. PM2.5 exposure assessment

A PM2.5 LUR model developed previously by (Jerrett et al., 2013)
was used to estimate individual exposures to PM2.5 at each mother
residential address. Such estimates are intended to best represent
spatially resolved long-term exposure to annual levels of PM2.5

between 1995-2006, rather than pregnancy period-specific ex-
posure. This PM2.5 LUR model has been used previously to ex-
amine chronic long-term exposure to PM2.5 and related health
effects over time, in a large cohort study of California adults (Jer-
rett et al., 2013). This LUR method has been described in previous
publications and the reader is referred to Beckerman et al. (2013)
and Jerrett et al. (2013) for greater detail. Briefly, the predicted
concentrations of PM2.5 were based on covariate data from the
following sources: (1) daily observations of PM2.5 air monitoring
collected between 1998–2002 at government monitoring sites
throughout California, which was supplemented with remotely-
sensed PM2.5 data covering the time period between 2001 and
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2006 (Beckerman et al., 2013); (2) data on traffic and road net-
works from 1990 to 2001; (3) land use data from the year 2001;
(4) population density data from the 2000 US Census; and
(5) numerical output from remote sensing modeling coupled with
atmospheric modeling (Van Donkelaar et al., 2010). A deletion/
substitution/addition algorithm was then implemented to develop
the final model covariates with a cross-validated R2 value of 0.65.

2.3. Covariates

Since this study is a methodological extension of previous work
for the LA County area (Ghosh et al., 2012; Wilhelm et al., 2011),
we applied similar covariates as in the previous studies to evaluate
PM2.5 in relation to risk of TLBW. Individual-level covariates were
maternal age at delivery (o20 years, 20–24 years, 25–29 years,
30–34 years, Z35 years), maternal race (non-Hispanic White,
non-Hispanic Black, Hispanic, Asian, and Other race), maternal
years of education (o9 years, 9–12 years, 13–15 years, and Z16
years), parity, gestational days, gestation days-squared (Ghosh
et al., 2012; Wilhelm et al., 2011) and sex of the infant.

2.4. Statistical analysis

2.4.1. Standard analysis
While our main objective was to evaluate the spatial de-

pendency of PM2.5 effects on TLBW, we initially examined “global”
(or L.A. County-wide) associations between PM2.5 and TLBW using
crude-unadjusted and multivariate adjusted logistic regressions
techniques. The intent of implementing a global fixed effects
model is to replicate exposure–response relationships between
increasing PM2.5 exposure and increasing prevalence of TLBW as
demonstrated from previous research. The crude and multivariate
models were implemented as a generalized linear model (glm)
using the binomial family with the logistic function in the R sta-
tistical computing environment (R-version 3.1.2) (see Supple-
mental Materials for code describing the specific models employed
in R (Everitt and Hothorn, 2010)). For consistency, the multivariate
model utilized same fixed effects covariates as for the multilevel
model described below.

2.4.2. Multilevel spatial modeling
The focus of the present study was to expand on previous work

by implementing a multilevel spatial logistic regression model that
would assess whether exposure–response relationships vary within
L.A. County. Along with the fixed effects on the covariates, we si-
multaneously included a random effect coefficient for the census
tract-level effect of PM2.5 on log-odds of TLBW. The random air
pollution effect coefficient is composed of a global intercept plus
independent and spatial residual error terms via the Besag–York–
Molly (BYM) model (Besag et al., 1991). Because this model includes
both spatial and independently structured error terms, the data
determined the extent of spatial smoothing employed, without re-
quiring strong assumptions regarding residual spatial dependency.
Further, this approach yields both a countywide global mean effect
as well as census tract-level random coefficients indicating sub-
regional (or census tract) effects of PM2.5 on TLBW.

The variance structure of the spatial component of the BYM
model requires specification of a spatial zero-one weight matrix of
dimension J by J , where J is the number of census tracts. Each
element i j, of the weight matrix is one if census tract i and j are
adjacent to each other, and zero otherwise. The ‘spdep’ package
(spdep package version 0.5-77 obtained September 30 2014) in R
(Bivand et al., 2013; Bivand and Piras, 2015) was used to construct
this neighborhood weight matrix and we assigned neighbors based
on queens adjacency, which is defined as any neighboring census
tract with a shared edge or vertex for a given area (i.e. census tract).
In fitting the model, we took advantage of the computational
efficiency of Integrated Nested Laplace Approximations (INLA,
version 0.0-1420281647) estimation techniques as implemented
in the well-established R-INLA package (Rue et al., 2015), which
has been used in several recent studies of large dimensions
(Bennett et al., 2014; Castelló et al., 2013; Lee et al., 2013; Lee and
Mitchell, 2014). The INLA approach avoids the computational
burden related to typical Markov Chain Monte Carlo techniques
(Gilks et al., 1998) often used to fit Bayesian spatial models and
allows accurate approximations to posterior marginal distribu-
tions of the model parameters (Grilli et al., 2014).

In the implementation of our model using R-INLA, the sub-re-
gional-level air pollution effects consist of an overall fixed effect
(that represents the overall mean effect) plus spatial and in-
dependent random residual effects as defined in the BYM model.
(Rue et al., 2014, 2009; Martino and Rue, 2009). Hence, each Sub-
Regional air pollution effect is then obtained as the sum of the
overall fixed effect plus spatial and non-spatial census tract-level
residual terms via the linear combination feature in R-INLA. This
allows us to obtain a posterior distribution for each Sub-Regional-
level air pollution effect, jβ , and to examine the spatial distribution
of these effects throughout L.A. County.

The full model specification is presented in Eqs. (1) and (2)
below. Our first-level logistic-regression model is,

y V xlogit 1i z ii
( ) η β= ‵ + ( )

where yi denotes the logit probability of TLBW for individual i, Vη′
represents individual-level covariates Vand associated fixed effect
coefficients η′, zi

β represents sub-regional random effects of ex-
posure, and xi denotes individual-level PM2.5 exposure. Note that
z ji = indicates the census tract j to which individual i belongs, so
if, say, individual 3 is in census tract number 12, then z 123 = , and

z 123
β β= . There are therefore j J, 1, ,jβ = … effects of PM2.5 on log-

odds of TLBW corresponding to each census tract, j.
We model the effects of PM2.5 on TLBW for each census tract, j,

as
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β

where 0γ is the overall region-wide PM2.5 effect, and Sj and jϵβ

denote spatial and independent residual error terms, respectively,
with the restriction S 0j j∑ = imposed for indefinability reasons.
While the independent error term is defined in the standard way
as N 0,j
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β ), the spatial error term is defined as,
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where the weights wj k, are elements

of the zero-one neighborhood adjacency matrix defined to be
equal to one when census tracts i k, are adjacent and zero other-
wise. This approach has been successfully employed in a variety of
exposure/health association studies. (see, for example, Molitor
et al. (2007).)

2.5. Mapping

Estimates of the posterior quantities correspond to the adjusted
random air pollution effects from the multilevel model were im-
ported into ArcGIS 10.1 (ESRI, Redlands, CA) and merged with
census tract boundary shapefiles to create exposure–response
census tract-level 'effect maps'. In addition to mapping the mul-
tilevel adjusted census tract mean effects, the R-INLA package
includes the 'inla.pmarginal' function that computes probabilities
from the posterior distribution of the marginal random effects as
obtained from the linear combinations described above. This en-
abled us to map the marginal probabilities that a given census
tract random effect coefficient lies above zero, P 0j( )β > . Similarly,



Table 2
Association between PM2.5 exposure and TLBW using standard and multilevel
spatial regression methods (N¼1,356,304).

Standard modela Spatial multilevel modela

Exposure OR (95% CI)b OR (95% CI)c

PM2.5 (per 10 mg/m3) 1.17 (1.10, 1.24)d 1.19 (1.02, 1.39)

a Adjusted for sex of the infant, gestation age of infant, gestation age squared,
maternal age, maternal race, maternal education level, and parity.

b OR per interquartile range¼1.03 (95% CI: 1.02, 1.04), IQR¼1.96 mg/m3.
c OR per interquartile range¼1.05 (95% CI: 1.03, 1.08), IQR¼1.96 mg/m3.
d For all of LA County, including rural areas, OR¼1.17 (1.10–1.24).
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we mapped the probability that a given census tract random effect
coefficient is above the adjusted global mean effect, P jβ β( > ¯).
Computation of these probabilities help illustrate where associa-
tions between PM2.5 and TLBW are most likely to occur (see
Supplemental Materials for requisite R-INLA code needed to obtain
posterior probabilities). Thus, our 'effect maps' depict probabilities
that the PM2.5 census tract-specific exposure–response ( jβ ) lies
above zero (or an OR above 1) and the probability that a census
tract-specific air pollution effect deviates from the overall average
P j( )β β( > ¯ ).
3. Results

3.1. Descriptive analyses

Between 1995-2006 the overall prevalence of TLBW was 2.1%
and the average PM2.5 exposure was 17.04 mg/m3 (interquartile
range¼16.25, 18.21). The spatial distribution of PM2.5 concentra-
tions indicated that exposures were highest within the urban core
of LA County, specifically the southern, eastern, and northwest
portions of urban LA (Supplemental Materials, Fig. S1). Risk factors
that were associated with TLBW included maternal age, race, level
of education, parity, gestation length (days), gestation squared, sex
of the infant (Table 1), and were adjusted for in the following
models.

3.2. PM2.5 regression analyses

3.2.1. Standard logistic model
The final statistical analyses included 1,356,304 births from

2,033 LA County census tracts. In unadjusted fixed effects logistic
regression, the odds of TLBW was 23.2% higher (OR¼1.23 [95%CI:
1.16, 1.30]) per 10 mg/m3 increase of PM2.5. After adjusting for
maternal age, race-ethnicity, education, parity, and infant gesta-
tion and sex, a 10 mg/m3 increase in PM2.5 exposure remained as-
sociated with statistically significant increased odds of TLBW
(OR¼1.17; 95%CI¼1.10–1.24)(Table 2). The fully adjusted model
results along with the model covariates are provided in detail
Table 1
Demographic characteristics overall and by TLBW and crude odds ratios for TLBW (N¼

Parameter Overall (N¼1,359,284) TLBW Cas
n % or mean (95% CI) n

Gestational age (days) Mean¼278.91 (278.92, 278.89)
Sex of infant
Male 688,568 50.66 (50.57, 50.74) 11,890
Female 670,716 49.34 (49.26, 49.43) 15,824
Maternal age
o20 years 143,265 10.54 (10.49, 10.59) 4090
20–24 years 318,122 23.40 (23.33, 23.47) 6959
25–29 years 364,301 26.80 (26.73, 26.86) 6581
30–34 years 322,341 23.71 (23.64, 23.79) 5674
Z35 years 211,255 15.54 (15.48, 15.60) 4410
Race–Ethnicity
White 249,759 18.37 (18.31, 18.44) 3605
Hispanic 852,886 62.75 (62.66, 662.83) 16,260
Black 107,237 7.89 (7.84, 7.93) 4175
Asian 94,764 6.97 (6.93, 7.01) 2097
Other 54,638 4.02 (3.99, 4.05) 1577
Maternal education
0–8 years 206,487 15.19 (15.13, 15.25) 4194
9–12 years 666,565 49.04 (48.95, 49.12) 14,867
13–15 years 232,319 17.09 (17.03, 17.15) 4453
Z16 years 253,913 18.68 (18.61, 18.75) 4200
Parity
0 522,598 38.45 (38.36, 38.53) 13,257
Z1 836,686 61.55 (61.47, 61.64) 14,457
within the Supplementary Material (Table S1, Supplementary
Material).

3.2.2. Multilevel spatial model
The multilevel spatial model provides PM2.5 coefficients on

TLBW at a global county-wide level (Table 2) and at the census
tract neighborhood level. The overall mean PM2.5 exposure–re-
sponse estimate for our multilevel spatial model was similar in
magnitude to the fixed effect logistic regression result
(ORspatial¼1.19 versus ORfixed¼1.17). The two maps presented in
Fig. 1 and Fig. 3 present the probability that a given census tract air
pollution effect (with outcome on log-odds scale) is above zero
(Fig. 1) and the probability that a given census tract effect is above
the estimated overall mean effect (Fig. 3), while Fig. 2 presents the
mean PM2.5 random effect per census tract.

For the probability effect map in Fig. 1, the census tracts in dark
brown have a 495% probability of an effect that is above zero
(P 0j( )β > .). Thus, these areas represent census tracts where the

PM2.5 exposure–response with TLBW is most likely to be positive.
The dark brown neighborhoods in Fig. 3 have a 495% probability
for an effect above the county-wide (or “global”) mean effect.
Hence, these areas represent census tracts that are most likely to
exhibit a PM2.5 exposure–response that is greater in magnitude
compared to the estimated mean exposure–response relationship,
which we are considering to be 'hotspots' within the context of
our study. The hotspots appear to be concentrated in census tracts
within central and south-central LA County (Fig. 3).
1,359,284).

es (N¼27,714) Non cases (N¼1,331,570) Crude TLBW
% (95% CI) n % (95% CI) OR (95% CI)

42.90 (42.32, 43.49) 676,678 50.82 (50.73, 50.90) 1.00
57.10 (56.51, 57.68) 654,892 49.18 (49.10, 49.27) 1.38 (1.34, 1.41)

14.76 (14.34, 15.18) 139,175 10.45 (10.40, 10.50) 1.00
25.11 (24.60, 25.62) 311,163 23.37 (23.30, 23.44) 0.76 (0.73, 0.79)
23.75 (23.25, 24.25) 357,720 26.86 (26.79, 26.94) 0.63 (0.60, 0.65)
20.47 (20.00, 20.95) 316,667 23.78 (23.71, 23.85) 0.61 (0.59, 0.64)
15.91 (15.48, 16.35) 206,845 15.55 (15.47, 15.60) 0.73 (0.69, 0.76)

13.01 (12.61, 13.41) 246,154 18.49 (18.42, 18.55) 1.00
58.67 (58.09, 59.25) 836,626 62.83 (62.75, 62.91) 1.33 (1.28, 1.38)
15.06 (14.65, 15.49) 103,062 7.74 (7.69, 7.79) 2.77 (2.64, 2.89)
7.57 (7.26, 7.88) 92,667 6.96 (6.92, 7.00) 1.55 (1.46, 1.63)
5.69 (5.42, 5.97) 53,061 3.98 (3.95, 4.02) 2.03 (1.91, 2.15)

15.13 (14.71, 15.56) 202,293 15.19 (15.13, 15.25) 1.00
53.64 (53.06, 54.23) 651,698 48.94 (48.86, 49.03) 1.10 (1.06, 1.14)
16.07 (15.64, 16.51) 227,866 17.11 (17.05, 17.18) 0.94 (0.90, 0.98)
15.15 (14.73, 15.58) 249,713 18.75 (18.69, 18.82) 0.81 (0.78, 0.85)

47.84 (47.25, 48.43) 509,341 38.25 (38.17, 38.33) 1.00
52.16 (51.57, 52.75) 822,229 61.75 (61.67, 61.83) 0.68 (0.66, 0.69)



Fig. 2. Census tract PM2.5 effects for TLBW (mean) after adjusting for maternal age, race-ethnicity, education, parity, and infant gestationþgestation squared, and infant sex.

Fig. 1. Probability map for census tract PM2.5 effects for TLBW (P 0j( )β > ) after adjusting for maternal age, race-ethnicity, education, parity, and infant gestationþgestation
squared, and infant sex.
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Fig. 3. Probability map for census tract PM2.5 effects for TLBW (P jβ β( > ¯)) after adjusting for maternal age, race-ethnicity, education, parity, and infant gestationþgestation
squared, and infant sex.

Fig. 4. Mean probabilities for census tract random effect above mean by LA County health districts.

E. Coker et al. / Environmental Research 142 (2015) 354–364 359
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3.2.3. LA health district summaries
LA County is composed of 26 health districts created from ag-

gregates of census tract boundaries for the purposes of health as-
sessments. Therefore, to highlight the observed spatial patterns in
Fig. 3, from the posterior distribution of the marginal random ef-
fects we calculated and mapped the average probabilities for LA
County health districts with respect to tract-level probabilities
above the overall mean PM2.5 coefficient. These numerical sum-
maries are simply descriptive since they were acquired by calcu-
lating the mean tract-level probabilities. Health districts of LA urban
core, including Central, Compton, Hollywood-Wilshire, Inglewood,
South, Southeast, and Southwest health districts, are characterized
by the highest probablities that the air pollution effect coefficients
are above the overall mean coefficient (Fig. 4). Thus the map sug-
gests effect ‘hotspots’ are concentrated within these health districts,
which are generally lower income and non-white in terms of race-
ethnicity (see Supplemental Materials, Figs. S2 and S3).
4. Discussion

4.1. Key findings

We applied Bayesian multilevel spatial modeling to examine
whether the exposure–response relationship between PM2.5 and
TLBW varies spatially. Consistent with previous findings from LA
County (Ghosh et al., 2012; Ritz et al., 2007; Wilhelm et al., 2011),
we observed an overall relationship between increasing PM2.5

exposure and increasing risk of TLBW. More important, we ob-
served substantive variations across census tracts within LA
County in the exposure–response between PM2.5 and TLBW.
Higher probabilities for positive PM2.5 effects were mostly con-
centrated in central LA and south central LA sub-regions. Relative
to the mean regional PM2.5 effect on the log odds of TLBW, several
census tracts located in central LA and south-central LA exhibited
higher exposure–response relationships in terms of effect size
and posterior probabilities for effects above the mean
(P jβ β( > ¯))40.95). These observations suggested that PM2.5 related
adverse effects on birth weight may be modified by place.

A number of plausible explanations may account for the spatial
patterning in the exposure–response between PM2.5 exposures
and TLBW observed in our study. Firstly, regionally varying and
spatially correlated neighborhood contextual factors may enhance
exposure gradients within an urban setting and other spatially
structured individual factors may further create susceptibility to
adverse birth outcome by interacting with PM2.5. Regionally
varying and overlapping aspects of neighborhoods with the po-
tential to enhance exposure to air pollutants or susceptibility to air
pollution related health effects may include (but are not limited
to): built environment factors (i.e. age of homes, homes set back
further from the curb along heavily trafficked roadways) (Ponce,
2005; Ramachandran et al., 2003); spatially correlated variation in
the types of PM2.5 sources (e.g. large truck traffic) and thus PM2.5

component mixtures (Laurent et al., 2014; Wilhelm et al., 2011);
the presence of older and higher pollution emitting vehicles, and
neighborhood SES (Ponce, 2005). For example, Singer and Harley
(2000) observed that older vehicles tended to emit higher air
pollutant levels relative to newer vehicles within the LA area, and
that vehicular emissions tended to be higher in low income areas
compared to higher income areas (even for vehicles of the same
age). Individual-level differences that display spatial clustering
may also partially explain spatial patterns in birth outcomes risks;
such as psychosocial (Ghosh et al., 2010), occupational (Horner
and Mefford, 2007; Ritz et al., 2007), or nutritional factors (Je-
drychowski et al., 2010; Lane et al., 2008), as well as individual
home environments (i.e. home insulation or access to air con-
ditioning (Ghosh et al., 2013; Jerrett et al., 2005; Ponce, 2005)). For
instance, Ritz et al. (2007) found that parous women in LA without
an occupation outside the home during the last 6 weeks of the
pregnancy who were highly exposed to traffic-related air pollution
had higher odds for preterm birth than exposed parous women
working outside the home, illustrating the potential impact of
exposure misclassification when using a home address. In another
study we conducted in LA (Ponce, 2005) individuals' access to
health insurance and their race, as well as neighborhood level
factors such as SES and the physical environment (i.e. proximity to
air pollution-related traffic and winter season) acted in concert to
increase susceptibility to adverse pregnancy outcomes across LA
county census tracts. Taken together this suggests a rather com-
plex set of individual- and neighborhood-level social, cultural and
environmental contributors to adverse birth outcomes that vary
over space and may act on different biologic pathways to impair
growth of the fetus resulting in TLBW, as suggested by the spatially
varying effects estimated in our study.

In addition to spatial clustering of neighborhood and individual
determinants and effect measure modifiers for birth outcomes,
multi-pollutant mixtures in urban areas may create gradients in
effects between Sub-Regions (Levy et al., 2013; Novák et al., 2014).
While multi-pollutant mixtures may be more toxic in terms of birth
outcomes, our study did not explicitly account for pollutant mix-
tures. While inclusion of a spatial random effects term may have
mitigated this limitation to some extent � since multiple pollutant
profiles have been observed to be clustered spatially (Austin et al.,
2012) – this is an important limitation of this study. Furthermore, it
cannot be ruled out that neighborhood-level and individual-level
susceptibility and pollutant mixtures co-occur and together con-
tribute to the observed spatially varying effect estimates seen in our
study. Within regions of CA, such geographic-based susceptibility
may be particularly acute. For instance, countywide studies in three
California counties (Alameda, LA and San Diego) found that, while
concentrations of individual pollutants such as diesel PM, NO2, and
PM2.5 were statistically significantly higher within socio-
economically disadvantaged compared to less disadvantaged com-
munities, when cumulative exposures to diesel PM, NO2, and PM2.5

were considered, the relationship between SES and exposure was
stronger (Su et al., 2012). Overlap of environmental and SES risk
factors that can enhance neighborhood-level susceptibility has been
reported previously (Jerrett and Finkelstein, 2005; Morello-Frosch
and Shenassa, 2006).

4.2. Spatial dependency, air pollution, and birth outcome studies

A multilevel spatial hierarchical modeling approach is estab-
lished as a flexible means of addressing spatial structure in the
exposure–response relationship between air pollution and health
effects (Boehm Vock et al., 2014; Dominici et al., 2000; Lee et al.,
2013) and may therefore highlight notable localized effects
(Chakraborty, 2012; Dominici et al., 2000; Earnest et al., 2007). A
major statistical advantage gained in using this approach to
modeling a spatially-structured exposure–response relationship is
to maximize statistical power by using data in all sub-regions to
inform the analysis, rather than calculating separate regression
models for each sub-region (Gelman and Hill, 2006). Multilevel
modeling approaches which incorporate spatial smoothing allow
information from nearby regions to potentially exert more weight
and influence compared to distant regions (Banerjee et al., 2004;
Zhuoqiong, 2000).

A strength of our approach is the inclusion of individual-level
pollutant effect estimates that are modeled with spatial structure at
the census-tract level. Some air pollution and birth outcome studies
have accounted for spatial dependency in the residuals, but still
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assume a global effect due to exposure (Berrocal et al., 2011; Cas-
telló et al., 2013; Thompson et al., 2014; Williams et al., 2007). A
spatial correlated autoregressive (CAR) model has been applied by
(Berrocal et al., 2011) to examine the effect of CT-level PM2.5 on
continuous birth weight in North Carolina. An important distinction
between the present study and Berrocal et al (2011) is that we
applied a spatially structured random air pollution effect term,
whereas Berrocal et al (2011) implemented a random intercept and
did not explore the possibility of geographic disparities in the PM
exposure–response relationship. A study by Thompson et al. (2014)
examined the exceedance probability of very LBW risks in relation
to proximity to National Priorities List Superfund Sites in Texas by
modeling the spatially structured error term using Poisson regres-
sion. This study, however, used aggregated outcomes for a given
geographic area and did not include individual-level air pollution
estimates of exposure. A study conducted in Spain that examined
municipal-level risks of PTB and LBW with proximity to different
types of industries modeled spatially varying effects using Poisson
regression with a spatial error term and an unstructured error term
(Castelló et al., 2013). A major difference in the Castelló et al. (2013)
study is that these researchers, again, used aggregated outcome
data and did not relate birth outcomes with individual-level esti-
mates of air pollutant exposures. A study by Williams et al. (2007)
applied a linear hierarchical random effects model with spatially
unstructured random coefficients and found substantial variation
across census tracts regarding the estimated effects of maternal
residential proximity to hazardous air pollution sites for reducing
average birth weight. Our results also found varying effects by
census tract; however, Williams et al (2007) did not use air pollu-
tion estimates but rather the proxy measure of spatial proximity to
hazardous air pollution emitting sites and did not apply spatial
structure to the random coefficients. While it is clear from these
studies that multilevel modeling is capable of revealing important
spatial processes regarding air pollution-related reductions in birth
weight; our work goes beyond previous findings by not only ap-
plying spatial structure to pollutant effects but illustrating spatially
varying effects while adjusting for individual level confounders.

4.3. Study limitations

Our study is limited by the presence of unmeasured con-
founders. Most notably we lack information on maternal smoking
or maternal exposure to indoor smoking. However, our previous
research (Ritz et al., 2007) found that adjustment for maternal or
household smoking did not alter the strength of air pollution effects
on adverse birth outcomes in LA County. Our study also did not
account for spatially varying housing characteristics (e.g. age of
housing stock, substandard housing, or lack of air conditioning) that
could potentially exacerbate gradients in intra-urban exposures;
even between neighborhoods with similar ambient PM concentra-
tions (Baxter et al., 2007; Burgos et al., 2013; Clougherty et al., 2011;
Jerrett and Finkelstein, 2005; Lv and Zhu, 2013; Meng et al., 2005;
Ramachandran et al., 2003; Reid et al., 2009). Additionally, PM-re-
lated birth outcome risks may be modified by individual-level or
neighborhood-level susceptibility factors that are often spatially
patterned, such as SES, racial–ethnic status, maternal body mass
index, maternal nutrition status, and other adverse neighborhood
conditions, e.g., poor access to healthy foods or green spaces
(English et al., 2003; Hystad et al., 2014; Jedrychowski et al., 2010;
Kannan et al., 2006; Lakshmanan et al., 2015; Lane et al., 2008;
Laurent et al., 2014; Ponce, 2005; Schempf et al., 2009).

While the PM2.5 LUR estimates in our study best represents the
spatial contrasts of chronic exposures at maternal residences
throughout LA county, our estimates lacked the temporal resolution
to consider exposures during specific pregnancy time periods. This
limitation may obscure important biologic differences with regard
to birth outcome risks associated with different trimester exposure
windows. Studies that have relied upon nearest site monitors for
PM2.5 estimation (Ghosh et al., 2012; Wilhelm et al., 2011) are better
equipped to capture the temporal contrasts in maternal exposures,
however, these studies lacked the spatial resolution to assess spa-
tially varying effects of PM2.5. For instance, while PM2.5 may be
fairly homogenous over a large region, it is likely that local-scale
sources of PM2.5 pollution carry greater importance when examin-
ing spatially varying TLBW effects (Laurent et al., 2014, 2013).
Therefore, it was determined that the value in obtaining high spatial
resolution was an acceptable temporal tradeoff, given the nature of
our research question. Furthermore, we are confident in the ability
of our exposure model to assess TLBW risks since our overall fixed
effect PM2.5 exposure–response estimate was consistent in terms of
effect size when compared with previous research findings (Dad-
vand et al., 2013; Ghosh et al., 2012; Hyder et al., 2014; Laurent
et al., 2014; Stieb et al., 2012; Wilhelm et al., 2011). For example, in
the present study, we found an OR of 1.03 per IQR increase in ma-
ternal PM2.5 exposure (Table 2). Ghosh et al. (2012) estimated ma-
ternal PM2.5 concentrations, using an inverse distance weighting
procedure based on governmental air monitoring stations for the
years 2000-2006 in LA County, and found an OR of 1.04 per inter-
quartile range (IQR) increase for entire pregnancy PM2.5 exposure.
Recently, Laurent et al. (2014) estimated an OR of 1.025 per IQR
increase in maternal PM2.5 exposure for LA County births between
2001 and 2008. Notably, Laurent et al. (2014) found that gasoline
PM2.5 exposure imparted the highest risk of TLBW compared to all
other sources of PM2.5 within LA. In a separate PM2.5 and birth
outcomes study, (Dadvand et al., 2013) pooled multiple PM2.5 and
TLBW analyses from seven different country study sites, despite
large heterogeneity between the country-specific PM2.5 effect esti-
mates, they estimated a 10% (95%CI: 3%, 18%) adjusted increased
odds of TLBW for a 10-unit increase in PM2.5 exposure, which is
comparable to our finding of a 17% increase per 10-unit increase in
PM2.5 exposure (Table 2).

4.4. Public health implications

Findings from our research is highly relevant to environmental
health disparities and regulatory policy. First of all, our study im-
plies that uniform regulatory standards geared towards reducing
public health impacts from air pollution may not be sufficiently
protective of susceptible sub-populations, and that such policies
may need to be spatially tailored to protect these sub-populations.
Secondly, our approach could identify 'hotspots' to help guide
spatially targeted public health interventions intended to protect
susceptible sub-populations from outdoor air pollution health ef-
fects (e.g., for example, by installing HEPA filters and air con-
ditioning to reduce indoor exposures). Lastly, while our study
found large within-county differences in effect estimates and thus
the potential for PM2.5 effect 'hotspots', additional data on po-
tential modifying factors by neighborhood (i.e. PM2.5 composition
or neighborhood food environment) are needed to more fully
explain the causes for this apparent spatial variation in the ex-
posure–response relationship between PM2.5 and TLBW.
5. Conclusion

We found that maternal exposure to PM2.5 was associated with
higher odds of TLBW in LA County. Moreover, our results indicate
that the spatial patterning of the exposure–response relationship
for PM2.5 and TLBW needed to be considered. While previous re-
search conducted in LA County has found variation of pollutant
effects on adverse birth outcomes based on neighborhood factors
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such as SES, our results take these previous findings a step further
by identifying neighborhood TLBW 'hotspots' most likely to be
affected negatively by air pollution. Also, compared to global effect
estimates, our findings suggest the potential value of modeling
spatial random air pollution effect coefficients in identifying dis-
proportionately impacted communities as well the relative prob-
ability of localized exposure–response estimates. Finally, addi-
tional research is needed in hotspot areas to explore which spa-
tially-based factors may help to better understand these differ-
ences between neighborhoods.
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