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ARTICLE INFO ABSTRACT

Keywords: Background: Long-term exposure to ambient fine particulate matter (< 2.5ug/m® in aerodynamic diameter;
Air pollution PM, 5) is significantly associated with increased risk of premature mortality. Our goal was to provide an updated
Mortality meta-analysis of all-cause and cause-specific mortality associated with exposure to PM, s and to better estimate

Particulate matter

; the risk of death as a function of air pollution levels.
Concentration -response

Methods: We systematically searched all published cohort studies examining the association between long term
exposure to PM, s and mortality. We applied multivariate linear random effects meta-analysis with random
effects for cohort, and study within cohort. Meta-regression techniques were used to test whether study popu-
lation or analytic characteristics modify the PM, s .mortality association and to estimate the shape of the con-
centration-response curve.

Results: A total of 53 studies that provided 135 estimates of the quantitative association between the risk of
mortality and exposure to PM, 5 were included in the meta-analysis. There were 39 studies from North America,
8 from Europe, and 6 from Asia. Since 2015, 17 studies of long-term air pollution exposure have been published,
covering, wider geographic areas with a wider range of mean exposures (e.g. < 12 or > 20 ug/m>). A penalized
spline showed the slope decreased at higher concentrations but appeared to level off. We found that the inverse
transform of average PM, s well approximated that spline and provided a parametric estimate that fit better than
a linear or logarithmic term for average PM, s In addition, we found that studies using space time exposure
models or fixed monitors at Zip-code scale (as compared to land use regression method), or additionally con-
trolling for area level socio-economic status, or with mean exposure less than 10 pg/m® were associated with
higher mortality effect estimates.

Conclusions: This meta-analysis provides strong evidence for the adverse effect of PM, s on mortality, that
studies with poorer exposure have lower effect size estimates, that more control for SES increases effect size
estimates, and that significant effects are seen below 10 ug/m®. The concentration -response function produced
here can be further applied in the global health risk assessment of air particulate matter.

1. Introduction

Long-term exposure to ambient fine particulate matter (< 2.5ug/
m? in aerodynamic diameter; PM, s) is significantly associated with
increased risk of premature mortality. Epidemiological cohort studies,
conducted largely in United States (the Harvard Six cities (HSC) cohort
(Lepeule et al., 2012; Dockery et al., 1993), the American Cancer So-
ciety (ACS) cohort (Turner et al., 2016; Pope et al., 2002), the US
Medicare Cohort (Di et al., 2017; Zeger et al., 2008), the Women's
Health Initiative cohort (Miller et al., 2007), the Nurses’ Health Study
(NHS) cohort (Hart et al., 2015; Puett et al., 2009) and Europe (Beelen
et al., 2014a, 2014b), reported this association at low to moderate
annual ambient average concentrations (from approximately 5 to

* Corresponding author.
E-mail address: avodonos@hsph.harvard.edu (A. Vodonos).

https://doi.org/10.1016/j.envres.2018.06.021

30 ug/m®). Recently evidence from Asia, where the levels of PM, 5 ex-
ceed the World Health Organization (WHO) annual limit (10 pg/m3)
(World Health Organization, 2005) also showed an association between
long-term PM, 5 exposure and all-cause, lung cancer and cardiovascular
mortality (Tseng et al., 2015; Katanoda et al., 2011; Ueda et al., 2012;
Wong et al., 2016).

Given quantitative evidence of long-term exposure to PM, s impact
on mortality, researchers have conducted systematic reviews (Hoek
et al., 2013; Chen et al., 2015; Hamra et al., 2014; Pelucchi et al., 2009)
that integrate existing information and provide concentration-response
for health impact assessments. In this meta-analysis, we extend those
reviews in several ways. First, we incorporate additional studies; (Di
et al., 2017; Crouse et al., 2015; Ostro et al., 2015; Pinault et al., 2017;
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Wang et al., 2017; Shi et al., 2016; Weichenthal et al., 2014; Pinault
et al., 2016; Weichenthal et al., 2016; Villeneuve et al., 2015; Hao et al.,
2015; Hart et al., 2015; Dehbi et al., 2017; Dimakopoulou et al., 2014;
Yin et al., 2017; Wong et al., 2015) that have been published since
2015. Importantly, some of those studies provide vital evidence of the
shape of the association at both the low end of the exposure distribution
and at the high end. Specifically, 14 studies were conducted on cohorts
with mean exposure less than 10 ug/m?>, and 8 were conducted on co-
horts with mean exposure above 20 pug/m>. Second, earlier reviews
primarily examined studies of all-cause mortality, excluding ones that
only looked at mortality at age above 65, or at cardiovascular deaths.
Some reviews have examined those outcomes separately. However,
70-80% (Kochanek et al., 2016) of all deaths in the developed world
occurs at ages above 65, so it is unreasonable to assume that studies of
deaths of people above age 65 are not informative about the risk of
deaths at all-ages and vice versa. Moreover, in 2012, WHO estimated
that about 80% of outdoor air pollution-related premature deaths were
due to ischemic heart disease and strokes (World Health Organization,
2016), suggesting again, that studies reporting associations with car-
diovascular deaths are informative about the risk of all-cause deaths,
and vice versa. The Global Burden of Disease (GBD) compare tool es-
timates that worldwide 58% of early deaths due to particulate air
pollution are cardiovascular deaths and 19% are from chronic re-
spiratory disease. Since most of the cohort studies examining the impact
of air pollution on mortality were performed in developed countries,
the proportions of deaths due to air pollution exposure that are cardi-
ovascular was even higher in the studies contributing to the meta-re-
gression. Thus, combined analyses with studies using all types of
mortality as outcome should have an advantage for estimating effect
sizes for all of these outcomes, particularly in estimating the shape of
the concentration-response, where additional studies at concentrations
that were less represented in outcome specific meta-analyses can be
very useful.

Further, estimates of pollution-related excess mortality depend on
biases due to exposure error, which may differ from study to study by
exposure assessment method. The most common exposure assessment
methods in epidemiological studies include; hybrid space time model
(which use combinations of satellite remote sensing, meteorology and
land use as predictors) (Kloog et al., 2014; Di et al., 2016), chemical
transport models (which use bottom up physics and chemistry models,
weather data and emissions data to simulate the atmospheric formation
and transport of particles) (Geng et al., 2015), land use regression
models (which use land use and meteorology as predictors) (Hoek et al.,
2008) and fixed monitors data. The first three sets of models are cali-
brated at monitoring sites. The exposure-response may also differ by
particle composition or population characteristics.

Previous quantitative summaries of effect size estimates of PM, 5
and mortality have been meta-analyses, which estimate a common ef-
fect size across studies. Meta-regressions, in contrast, have independent
variables that predict differences in effect size estimates (the dependent
variable in the meta-regression) across studies based on study char-
acteristics, which can include the average concentration in the study, or
the other potential effect modifiers described above. This analysis ap-
plies such an approach to investigate whether heterogeneity between
the studies may be explained by differences in characteristics of the
studies (e.g. exposure assessment method) or study populations char-
acteristics (age, gender and socio-economic status) or exposure level.
This next step in integrative methodology can help us better understand
concentration-response, and which study-level factors drive the mea-
sures of effect.

In this manuscript, we provide an updated meta-analysis, specifi-
cally using meta-regression to assess the dependence of the effect size
on mean PM,s concentration, on exposure assessment method, on
cause of death, on source of particles and on population characteristics.
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2. Methods
2.1. Literature search

We systematically searched all published cohort studies that ex-
amined the association between long term exposure to PM,s and
mortality. This systematic review and meta-analysis is reported in ac-
cordance with the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) statement (Moher et al., 2009). We
identified studies through a search in Pubmed (Medline Ovid), Embase,
EBSCO, Web of Science and Global Health on CAB databases (last ac-
cessed on April 20, 2017). The following keywords were used: ‘mor-
tality ¢, ‘air pollution’, ‘particulate matter’, ‘PM2.5’. Hand searching of
selected journals and checking of bibliographies in relevant published
reviews or articles were also performed to supplement the electronic
searches. The complete search strategy used for the databases is shown
in Table 1 in supplemental material.

2.2. Inclusion and exclusion criteria

Studies were included in the current meta-analysis based on the
following criteria; (1) studies of long-term association of outdoor PM, 5
with mortality, including all-cause-all-age, respiratory, cardiovascular,
cardiopulmonary or lung cancer mortality; and all-cause, age 65 + (2)
information on study period, locations and population was explicit (3)
effect estimates such as beta coefficient () with standard error (SE) or
relative risk (RR) with 95% confidence interval have been provided.
The description of the method for assigning exposure also had to be
present. Experimental studies, case reports, studies on short-term as-
sociations between PM, s and mortality, publications with no or in-
complete results and studies provided data on only specific sub-
populations were excluded. Articles not written in English were not
considered for inclusion. For each study, the data were independently
extracted by two investigators (AV and YA), and if their evaluations
differed, the discrepancy was resolved by discussion and adjudicated by
a third investigator (JS). Based on the above criteria, the selected
mortality outcomes associated with particle exposure used in this
analysis were as follows; all-cause mortality, elderly all-cause mortality,
cardiovascular mortality, elderly cardiovascular mortality, lung cancer
mortality, cardiopulmonary mortality, and respiratory mortality.
Studies were included regardless of significance of results.

2.3. Statistical analysis

For the selected studies, the title, authors, region, publication year,
study period and specific mortality risk estimates were extracted and
entered into a Microsoft Excel database (Version2010 Microsoft,
Redmond, WA, USA). All risk estimates were expressed as beta coeffi-
cient and their standard errors (SE). Variables that might modify the
effects of PM, s on mortality such as percent of study population that
was female, age distribution, mean PM, s concentration, percent of
smoking and different exposure assessment methods were collected.

2.4. Meta-analysis

To estimate the overall mortality effect size, we applied multivariate
linear random effects meta-analysis and meta-regression models. Some
of the large cohorts (Medicare, Harvard Six Cities, ESCAPE, ACS etc.,)
were represented by more than one study. This could be because dif-
ferent studies examined different outcomes, used different exposure
methods, or had different follow-up periods. Rather than only use the
latest study, we used all of them, because that can help inform our
understanding of what is associated with differences in coefficients. To
address the correlation among multiple analyses of the same cohort, we
incorporated random nested random effects of study within cohort. We
ran these analyses using the function ‘rma.mv’ within the {metafor}



A. Vodonos et al.

package (Viechtbauer, 2010) under the R platform (version 3.1.3; R
Core Team 2015) (CORE TEAM, 2015).
The model assumes:

By = bo + f (averagePM, 5) + ciIi + b1 Elderly + byFemale + ymodifiers
+ u; + v

where B;; is the coefficient extracted from study j in cohort i, Iy are
indicator variables for categories of death (CVD, lung cancer, etc) cx are
the coefficients capturing the difference in effect size estimate for PM s
between each category and the reference category (all cause), elderly is a
variable indicating whether the coefficient was extracted from an el-
derly population study, and female is an indicator variable for a coef-
ficient extracted from a study comprising only females. Modifiers is the
matrix of covariates (e.g. percent smoking, exposure assessment), and y
is the vector of coefficients for those modifiers. Each coefficient entered
the analysis once. We used a random effects meta-analysis with a two-
level random intercept where u; was a random intercept for cohort i,
and v; was a random intercept for study j within cohort i. That is, we
assumed that even conditional on the modifiers, there were some un-
explained differences in effect sizes across studies, with a variance
component that needed to be estimated. That variance in the effect size
was assumed to be across cohorts, and if more than one study was found
from a cohort, across studies nested within the underlying cohort. The
variance across outcomes is captured by the fixed effect indicators I.

We defined averagePM, . as the mean PM, s in each study from each
cohort and used it as an effect modifier to examine how the shape of the
concentration-response curve changed with mean exposure level. To
choose the most appropriate form of f (averagePM, ;) we first fit our
meta-regression as a generalized additive mixed model, using the the
‘mgcv’ package with a penalized spline for averagePM, . using our
baseline model, which controlled for outcome (e.g. whether the study
was restricted to all age cardiovascular deaths, all cause deaths over 65,
etc). This took advantage of meta-analyses being a form of a mixed
model. Since nonparametric concentration-response curves make it
more difficult to use the results to estimate the number of premature
deaths given the range of the air pollution concentrations and the
baseline mortality rates in each region, we fit a parametric dose-re-
sponse curve that is very similar to the non-parametric one, but with the
advantage that we can provide a single parameter, which, with trans-
formation of the PM, 5 values, allows estimation of the slope at any
concentration in the range that we examined. We considered a linear, a
logarithmic transform, an inverse transform, and an inverse square root
transform and chose the best fitting one, defined by AIC. We then
compared that graphically with the penalized spline model.

2.5. Meta-regression

WE considered other factors that may modify the PM, 5 mortality
association. These were; study population characteristics that may
convey susceptibility (percent of female, age distribution, percent of
smoking, percent low educational level, percent low income) and
analytic characteristics (whether area level socio socioeconomic status
(SES) was controlled for, type of exposure assessment) by including
them separately as covariates in the meta-regression models. In addi-
tion, since toxicity of PM, s mass may vary by its composition and
source, we examined whether the source of PM, 5 (expressed as percent
source from natural sources (dust and sea salt), traffic, industry, bio-
mass burning and other sources) modifies the effect of PM, 5 and esti-
mates of the mortality. We added to each study information regarding
the distribution of PM, 5 source based on available information from a
detailed systematic review of local source contributions at global level
(Karagulian et al., 2015) (Table 2 in supplemental material).

Exposure assessment was classified by categories we felt were re-
presentative of different amounts and types of exposure error. Land use
regression was used as the reference as it was the most common recent
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approach. Some studies used fixed site monitors, either close to parti-
cipants’ homes, or with more regional matching which would include
more exposure error, and others employed air dispersion or hybrid-
space-time models. These additional factors were first examined by
being individually added to the baseline model. Variables that were
significant predictors of difference in effect size from those analyses
were considered in a final model and kept if marginally significant (p-
value < 0.10). In addition, because of the substantial number of results
in studies with mean exposures below 10 ug/m°, we also conducted a
meta-analysis restricted to those studies to directly assess the evidence
below the WHO guideline.

3. Results

A flow diagram of the study selection process is presented in
Supplemental Figure 1. Estimates from one cohort study from Norway
(Nass et al., 2006) could not be converted to units of 1-ug/rn3, and
thus, this study did not contribute to the meta-estimates. Five studies
that provided data on only specific subpopulations; a tuberculosis co-
hort (Peng et al., 2017), myocardial infarction survivors (Tonne et al.,
2016; Tonne and Wilkinson, 2013; Chen et al., 2016) and U.S. veterans
who were diagnosed as hypertensive (Lipfert et al., 2006), were ex-
cluded from the meta-analysis. Finally, total of 53 studies from 29 co-
horts that provided 135 estimates of the quantitative association be-
tween the risk of mortality and exposure to PM, s were included in the
meta-analysis. There were 39 studies (18 cohorts) from North America,
8 studies (6 cohorts) from Europe, and 6 studies (5 cohorts) from Asia.
The studies in the meta-analysis primarily used Cox proportional ha-
zards models, other studies used (Wang et al., 2017; Hao et al., 2015;
Kloog et al., 2013; Zeger et al., 2008) relative incidence analysis.

Table 1 summarizes the effect estimates, study population char-
acteristics and PM, s measurements for the studies included in the
meta-analysis. Most of the studies reported positive significant asso-
ciations between PM, s, while a few studies reported negative asso-
ciation with PM, 5 (Ueda et al., 2012; Crouse et al., 2015). The highest
association was reported in a study of women residing in 36 U.S. me-
tropolitan areas (Miller et al., 2007).

Reported average PM, s exposure levels were higher in studies from
Asia and varied from 25.8 ug/m?® to 43.7 ug/m?>, compared to the stu-
dies in North America and Europe, with ranges of 4.1-23.4 ug/m® and
9.8-28.3, ug/m> respectively. The mean PM, s level across all studies
was 15.7 = 7.9. In addition, exposure assessment techniques differed
across studies. Some studies used fixed site monitors, either close to
participants’ homes (zip-code level =7), or with more regional
matching (city level =6, area level =7), and others employed modeling
techniques, such as land use regression (n = 13), air dispersion (n = 6)
or hybrid-space-time models (n = 14). Supplemental table 2 sum-
marizes the regional averages of sources of ambient PM, s with mat-
ched studies in the current meta-analysis based on their geographical
area. Based on the available information, in USA 24% of urban ambient
air pollution from PM, 5 is contributed by traffic, compared to 22.6% in
Europe and 23.5% in China. Percent of PM, s originating from industry
was higher in the Asia countries with 34% in Japan and 17.1% in China,
compared to 5.2% in USA and 10.3% in Europe.

Table 2 present the results of the baseline meta-analyses estimating
the overall and specific cause mortality. In our basic model, we found
that the inverse transform of average PM, s fit best among the para-
metric models, as judged by AIC (Fig. 1). That is, the PM, 5 coefficient
decreased inversely proportional to the mean concentration. This was
also consistent with our penalized spline model (Fig. 2). Using this
PM, 5 term, and the indicators for cause of death, we found that for all-
cause all-age mortality, a 1 ug/m? increase in PM 5 was associated with
a 1.29% increase in all-age all-cause mortality (95%CI 1.09-1.50) at a
mean exposure of 10 pg/m®, which decreased to 1.03% (95%CI 0.97-
1.11) at a mean exposure of 15.7 ug/m> (the mean level across all
studies), and to 0.82% (95%CI-0.52-1.12) at 30 pg/m?’. The percent
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Table 2
Estimates from meta-regression for the association between long term PM, s
exposure on Overall and Specific Mortality risk.

Mortality Coefficient SE p-value Percent increase at
PM,5-10, (%)
Inverse transform of 0.071 0.038 0.060 -
average PM, 5
1
= s
Intercept (All-cause 0.006 0.003 0.033 1.29(1.09-1.50)
mortality)”
Cause specific mortality
Cardiovascular mortality ~ 0.002 0.001 < 0.001 1.46 (1.25-1.67)
Lung cancer mortality 0.002 0.001 0.008 1.22 (0.87-1.39)
Respiratory mortality — 0.002 0.001 0.139 1.13 (0.85-1.41)
Cardiopulmonary 0.006 0.001 < 0.001 1.92(1.59-2.25)
mortality
Elderly studies only 0.003 0.001 < 0.001 1.61 (1.35-1.85)
(yes/no)
Female studies only 0.0002 0.001 0.892 1.31 (1.01-1.62)
(yes/no)

2 All-cause, all-ages mortality represents the reference group to indicators for
cause specific mortality.

N

Percent change in deaths per 1 (pg/ma)

L | L]
20 30

Mean PM, 5 (ug/m”)

L1l |
40

S I 1 AT
10

Fig. 1. Meta-regression analysis of long-term PM,s exposure and percent
change in mortality.

increase was larger for cardiopulmonary, cardiovascular and elderly
mortality with 1.92% (95%CI1.59-2.25),1.46% (95%CI 1.25-1.67) and
1.61% (95%CI 1.35-1.85), respectively at a mean exposure of 10 ug/
m>, but smaller for respiratory and lung cancer deaths with 1.13%
(95%CI 0.85-1.41) and 1.22% (95%CI 0.87-1.39), respectively.

We further examined the effect modifiers described above. Since
some of the studies did not report on study population characteristics,
studies with missing information were excluded from the analysis. We
found several additional modifiers of effect size. Table 3 shows the
meta-regression results of PM,s—mortality estimates on selected
modifiers, and the number of the studies excluded due to the missing
information. PM, 5 exposure assessment with a hybrid space time model
(i.e. using combinations of satellite remote sensing, chemical transport
models, land use and meteorological variables) and fixed monitors at
Zip-code scale (as compared to land use regression method as our re-
ference) were significantly associated with higher PM, 5 effect size es-
timates. The percent increase in mortality rates per 1 ug/m> at a mean
exposure of 10 ug/m> was estimated to be 1.61% (95%CI 1.18-2.04)
and 1.67% (95%CI 0.85-2.49), respectively when those exposure as-
sessments were used. In addition, we found that controlling for area SES
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Fig. 2. Penalized spline model plot of long-term PM, s exposure and percent
change in mortality.

(additionally to the individual level SES) was significantly associated
with higher effect size estimates with 1.43% (95%CI 1.20-1.66) at
mean exposure of 10ug/m>. Moreover, geographical locations with
higher percent of PM, 5 sourced from traffic was significantly associated
with higher estimates with a 2.05% increase in mortality rate (95%CI
1.89-2.81) per pg/m*>. Other variables in the meta-regression (percent
of female, percent low income and percent low education or age dis-
tribution) were not significantly associated with the mortality esti-
mates. We then fit a combined model with all the significant variables
from the separate analysis (Area level SES and fixed monitors at Zip-
code scale, hybrid space time model and particles from traffic source).
Only Area level SES variable remained significant in our final model,
however the effect estimates for the other modifiers did not changed in
the combined model, suggesting this is a power issue rather than con-
founding by other modifiers. Assuming that the space time models have
higher effect estimates because of smaller exposure error, the best es-
timated all-cause mortality effect size at 10 pg/m® would be 1.61%
(95%CI1.18-2.04). In addition, our meta-regression restricted to stu-
dies with mean concentrations below 10 pg/m> was significant with a
2.4% increase per 1 ug/ms, 95% (95%CI 0.8-4.0).

4. Discussion

This comprehensive meta-analysis assessed the associations be-
tween exposure to chronic fine particulate matter pollution and all-
cause mortality. It advances on previous ones (Hoek et al., 2013; Chen
et al., 2015; Hamra et al., 2014; Pelucchi et al., 2009) in several ways,
in addition to incorporating more studies. First, by including the asso-
ciation between e.g. the coefficients of all-cause mortality and the
coefficients of mortality among persons aged 65 or more in a meta-
regression framework, we are able to incorporate many more studies
than previous meta-analyses, which dealt with outcomes individually.
This, in turn gives us more power to examine effect modification by
both exposure concentration as well as other potential modifiers. For
example, the most recent meta-analysis by Hoek et al. (2013) used 11
coefficients of all-cause all-age mortality and 10 coefficients of cardi-
ovascular mortality whereas we were able to use 135 coefficients from
53 cohort studies. Second, by taking advantage of newer studies at
higher and lower exposure concentrations we were able to estimate
how the effect size estimate changes across the range of exposure
concentrations, showing both evidence of effects below the WHO
guideline of 10 ug/m> and providing, for the first time, estimates at
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higher concentrations that do not rely on extrapolation from other ex-
posures (e.g. secondhand smoke). Third, this is the first meta-analysis to
examine how the nature of the exposure assessment in published stu-
dies impacts effect size estimates. We found that less error prone ex-
posure assessments tended to produce higher effect estimates, sug-
gesting that meta-analyses that ignore exposure error will likely
underestimate effect sizes, since the studies with more exposure error
are producing downwardly biased effect size estimates. Importantly, we
show that more control for SES is associated with larger effect size es-
timates, indicating that confounding by SES is unlikely to be a source of
upward bias in PM, s effect estimates. Finally, we identified traffic
particles as likely to be more toxic than average, on a unit mass basis.

Our baseline analysis found a percent increase in all-cause mortality
per 1 ug/m? in PMj 5 of 1.03% (95%CI 0.97-1.11) at a mean exposure of
15.7 ug/m> as compared to 0.6% (95% 0.4-0.8) in the previous Hoek
meta-analysis. This likely reflects our ability to account for the smaller
effect size estimates at higher exposures by including mean PM, 5
concentration as a modifier. Those smaller number pull down the
average effect size estimate in a meta-analysis, while a meta-regression
that accounts for that variation will avoid a downward bias in the effect
at lower exposures. However, we confirm the results of the meta-ana-
lysis by Hoek et al. (2013), which found a higher effect size for PM, 5
for deaths from cardiovascular disease than from respiratory diseases.

The findings from the current meta-analysis indicated that the effect
size decreased with increasing PM, 5 concentrations across the studies,
providing evidence of a nonlinear concentration response association.
This has been noted previously. To estimate the concentration-response
association at the higher ambient exposures, Geng et al. (2015), Burnett
et al. (2014), fitted an integrated exposure-response (IER) model where
active smoking and secondhand exposures were converted to estimated
annual PM, s exposure equivalents using inhaled doses of particle mass.
This function was updated and utilized in several recent assessments of
global mortality from PM, s (Apte et al., 2015; Song et al., 2017; Cohen
et al., 2017). There are three main differences between the approach in
IER function and the approach in the current meta-analysis; (1) rather
than trying to convert cigarette smoke exposure to PM, 5 our analysis
was able to rely on actual studies of ambient PM, s; (2)whereas the IER
model specified an a priori functional form that required predicted
estimates to flatten out in high exposures, the current analysis first used
an agnostic fit based on penalized splines and then chose a functional
form that was very close to the spline and minimized AIC; (3) in the IER
function, RR estimates were weighted by the inverse of the variance
estimate, assuming no heterogeneity between the studies. In our ana-
lysis we consider a random effect for each study and cohort. By using
newer PM, s studies at high (and low) concentrations we were able to
provide insight into the shape of the concentration-response using only
ambient PM, 5 exposure studies which should provide a more reliable
estimate of what the impact is at those concentrations. As is clear from
Fig. 2, our empirical concentration-response curve flattens out at higher
concentrations, as does the IER curve. However, this flattening is not as
steep as the IER, as Asian studies at high concentration report larger
effect size estimates than would be expected from the IER. Hence es-
timates of the global attributable fraction of deaths due to air pollution
using the current study would be higher than the estimates using the
IER function. Importantly for the developed world, we also find a larger
effect at concentrations below 10 pg/m? as well.

In addition, our meta-regression analysis showed that exposure as-
sessment with hybrid space time model, or nearby fixed monitors (as
compared to land use regression method) resulted in higher estimates.
This suggests that the lack of time resolution in many of the land use
regression exposure estimates may result in exposure error, such as
different spatial patterns in years not sampled in the exposure model,
and consequently downwardly bias the effect size. Moreover, our re-
sults show a clear pattern of effect estimates decreasing as the exposure
measurement error increases; i.e the lowest effect estimate was found
using the monitor information within area scale as compared to the
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land use regression method, then dispersion models, monitors within
city scale, monitors within zip-code scale and finally the highest effect
estimate observed using the hybrid space time model. Thus, since the
exposure assessment measurement method matters, the latter should be
considered while estimating the effect of health outcomes associated
with air pollution. In particular, the effect size estimates from using
area level monitors produce estimates 30% lower than those from land
use regression, and 44-46% lower than those using the most accurate
exposure models. Hence future systematic reviews may wish to discard
such studies as too subject to bias due to exposure error, or, as we have
done, provide a means to correct the estimate to what would have been
seen had all studies used better exposure estimates. Previous meta-
analyses did not assess the impact of different exposure assessment
methods but rather estimated the mean of PM, s-mortality estimates
from all the methods.

An important finding is that studies that controlled for area level
SES were associated with higher mortality effect estimates. This pro-
vides assurance that the lack of such variables in some studies did not
result in upward bias in effect sizes, but likely in a downward bias. This
is an important finding as some air pollution studies have been criti-
cized for not including enough SES control. Higher percentage of PM s
sourced from traffic was associated with higher estimates of mortality
in our current meta-analysis. This supports the evidence from recent
studies showing that toxicity of PM, 5 mass vary from place to place,
depending on their respective source mixtures (Ostro et al., 2015;
Thurston et al., 2016; Laden et al., 2000). However, the composition
data from the individual cohorts was not available in the publications,
thus our ability to identify PM,s composition was limited by data
availability (Karagulian et al., 2015), and variations within countries
and over years in particle composition that we were unable to capture
added considerable error to our classification of relative sources. Fur-
ther work is clearly warranted.

We also took advantage of the relationship between meta-regression
and mixed models to nonparametrically estimate the concentration-
response relationship, which confirmed a shape of lower slopes at
higher exposures, but also a leveling off of that decline to an asymptote.
That is, at some point the slope ceased falling. This pattern, in addition
to the higher AIC, justifies the use of an inverse relationship in our
parametric model. Our results of the nonlinear PM, s-mortality con-
centration- response association support the evidence for the associa-
tion found between PM,s and cardiovascular mortality, where the
concentration-response function increased more rapidly at lower con-
centrations and the marginal increase in the excess relative risk de-
creases at higher exposures (Pope et al., 2002, 2011).

Our meta-analysis also takes advantage of new studies at lower
concentrations to learn more about the effect size at levels below cur-
rent standards or guidelines. With 14 studies conducted on populations
with mean exposure below 10 ug/m>, we had ample power to demon-
strate effects below the WHO standard. A further analysis of the
Harvard Six City Study used smooth functions to explore the con-
centration-response relation between PM, 5 and daily deaths at lower
exposures (Schwartz et al., 2002) and found the estimated concentra-
tion-response relation was near linear with no evidence of a threshold.
In a reanalysis of the data derived from the American Cancer Society
(ACS), the adjusted effect of fine particles on mortality showed a
stronger relationship in the lower (up to about 16 pg/m?®) than in the
higher range of their values. The recent analysis from Canadian Census
Health and Environment Cohort, showed that the shape of the con-
centration response curve for various causes of death were supra-linear,
with greatest increase in the lower ranges of PM, s exposure (Pinault
et al., 2017). Notably, the average exposure in that cohort was only
8 ug/m>, and the lowest measured level was 1 ug/m®. Our meta-ana-
lysis was able to take advantage of these more recent studies to estimate
the slope at lower concentrations and find significant and higher esti-
mates. Consistent with this, even low levels of exposure from ambient
air pollution have been associated with pulmonary and systemic
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oxidative stress, inflammatory vascular dysfunction, increased platelet
activation and blood viscosity, atherosclerosis, IHD, and altered cardiac
autonomic function (Brook et al., 2010; Pope et al., 2004).

There are a number of limitations that must be acknowledged. We
have assumed that the estimated coefficients from the studies were
normally distributed, and that the random intercepts for cohort and
study within cohort were also normally distributed. These are standard
assumptions in all meta-analyses. The large sample sizes of the cohorts
suggest that the first assumption is likely to have been met, and the
large number of cohorts and studies used in this analysis suggests that
the central limit theorem makes the second likely. The assessment of
particle composition as a fraction of total was crude and may have
limited our ability to detect different toxicity. While we were able to
include Asian cohorts with higher exposures there are still cities whose
exposure remains outside of the range of our study, and extrapolation is
required to do a Health Impact Assessment there. That our evidence
indicates the fall of the slope with higher concentrations seems to
asymptote provides support for that extrapolation, but it remains an
important uncertainty. Further, the locations of the cohort studies are
not representative of the world. Hence the application of the does-re-
sponse curve to populations with substantially different characteristics,
or with exposure to different mixes of particle types creates additional
uncertainty. This is also true for all previous attempts to generate a
universal concentration-response to apply globally. We have tried to
address this limitation using meta-regression methods, looking at po-
pulation and particle characteristics as predictors of differences in the
effect size for particles. Finally, the examination of the effect mod-
ification by study population characteristics was limited because all
studies did not include all characteristics; thus caution should be ap-
plied in applying these results. In addition, percent low income was
characterized differently across studies from different areas. However,
we believe that while different methods were used to define percent low
income they do reflects the socio-economic status in the specific loca-
tions of the study and provide information about relative, but not ab-
solute, socio-economic position.

5. Conclusion

In conclusion, this meta-analysis provides a strong evidence for the
adverse effect of long-term exposure to air pollution and mortality.
There are a significant number of new studies on long-term air pollution
exposure, covering wider geographic areas, and both studies where
exposures were predominantly at concentrations < 10 ug/m>® and
predominantly at concentrations > 20 ug/m°. The empirical findings
of this analysis have important public health implications, including
that the marginal benefits of PM, s reduction increase as the con-
centrations fall, and that more SES control does not decrease effect size.
Our analyses contribute to the empirical evidence on the overall mor-
tality estimate and suggest an alternative function for further applied to
global health risk assessment of air particulate matter.
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