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Abstract Assessing the long-term benefits of marginal

improvements in air quality from regulatory intervention is

methodologically challenging. In this study, we explore

how the relative risks (RRs) of mortality from air pollution

exposure change over time and whether patterns in the RRs

can be attributed to air quality improvements. We em-

ployed two-stage multilevel Cox models to describe the

association between air pollution and mortality for 51 cities

with data from the American Cancer Society (ACS) cohort

(N = 264,299, deaths = 69,819). New pollution data were

computed through models that predict yearly average fine

particle (PM2.5) concentrations throughout the follow-up

(1982–2000). Average PM2.5 concentrations from 1999 to

2000 and sulfate concentrations from 1980 were also

examined. We estimated the RRs of mortality associated

with air pollution separately for five time periods

(1982–1986, 1987–1990, 1991–1994, 1995–1998, and

1999–2000). Mobility models were implemented with a

sub-sample of 100,557 subjects to assist with interpreting

the RR estimates. Sulfate RRs exhibit a large decline from

the 1980s to the 1990s. In contrast, PM2.5 RRs follow the

opposite pattern, with larger RRs later in the 1990s. The

reduction in sulfate RR may have resulted from air quality

improvements that occurred through the 1980s and 1990s

in response to the acid rain control program. PM2.5 con-

centrations also declined in many places, but toxic mobile

sources are now the largest contributors to PM in urban

areas. This may account for the heightened RR of mortality

associated with PM2.5 in the 1990s. The paper concludes

with a three alternative explanations for the temporal pat-

tern of RRs, each emphasizing the uncertainty in ascribing

health benefits to air quality improvements.
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RR Relative risk

CR Concentration-response

MSAs Metropolitan statistical areas

CVD Cardiovascular disease

GAM Generalized additive model

SO4 Sulfate

EPA Environmental Protection Agency

1 Introduction

There has been considerable interest in quantifying the health

benefits from government interventions to improve air

quality (NRC 2002). In particular, the Health Effects Institute

(HEI 2003) has developed an ‘‘accountability’’ framework to

evaluate the impact of improvements in air quality. Such

evaluations have often proven difficult—with a few excep-

tions—because air quality regulations exert impacts through

complex incremental changes. This paper uses the American

Cancer Society (ACS) Cancer Prevention II prospective

cohort to illustrate the uncertainties in assessing the health

benefits of air quality improvements in the United States.

An analysis of residential mobility patterns is used to

further indicate the complexities of attributing health ben-

efits to air quality improvements. Specifically, if mobility is

pervasive and subjects move between zones of the country

with different pollution concentrations, previously unmea-

sured ‘‘population mixing’’ effects (Stiller and Boyle 1996;

Koushik et al. 2001) may exert a large influence on the

exposure experience of the cohort. Further complications

arise when migration intermingles with population sus-

ceptibility. As a consequence, attributing health benefits to

long-term improvements in air quality raises many meth-

odological issues, which we term the ‘‘geography of

uncertainty.’’ The paper is intended to generate hypotheses

for identifying important aspects of the spatial and temporal

uncertainties in air pollution–mortality relations and sub-

sequent benefits assessment, rather than to supply specific

empirical information for benefits estimation. Such benefits

assessments should be based on other published literature

(Pope et al. 2002; Krewski et al. 2000) where the emphasis

is on deriving epidemiologic estimates rather than illus-

trating methodological and conceptual issues. The paper

thus concludes with three possible explanations for the

observed risk patterns and for understanding why risks from

air pollution may change over time.

2 Methods

2.1 Health and exposure data

We employed two-stage multilevel models with new im-

puted exposure data for different periods of follow-up in

the ACS prospective cohort. This cohort was enrolled in

1982 and included over 1.1 million participants. New

pollution data were computed using predictive models to

impute PM2.5 concentrations from measured total sus-

pended particulates (TSP) and particles less than or equal

to 10 lm in diameter (PM10) (Lall et al. 2004). This re-

sulted in estimates of the average annual concentrations

PM2.5 in 83 cities during the period 1972–2000. These

estimates relied on sites with co-located TSP, PM10, and

PM2.5 monitors to derive estimates capable of predicting

over 43% of the variation in PM2.5 at locations not included

in the model calibration. Some 51 of these cities were in-

cluded in previous analyses with measured PM2.5 concen-

trations from 1999 to 2000 and sulfate concentrations from

1980 (N = 264,299 with 69,819 deaths). The 51 cities in-

cluded here were selected because of the availability of

previously used and new exposure models. Cities used here

were mapped in Fig. 1 in the context of cities included in

previous PM2.5 and sulfate analyses (Pope et al. 2002;

Krewski et al. 2000). Of note, there were fewer cities in the

Ohio River Valley, where the RRs of mortality due to air

pollution were shown to be highest in previous analyses

(Jerrett and Finkelstein 2005).

2.2 Statistical model relating mortality to air pollution

exposure

The association between ambient concentrations of air

pollution and mortality is examined by a survival model in

which the probability of dying at any given time or age is

related to known risk factors for death, such as smoking

and diet, and ambient air pollution. This instantaneous

probability of death, or hazard function, is mathematically

related to the risk factor via the model

h
ðsÞ
ic ðtÞ ¼ h

ðsÞ
0 expðb0XðsÞic Þ;

where h
ðsÞ
ic ðtÞ is the hazard function for the ith subject in the

cth community in the sth strata. The model assumes that

the baseline hazard function, h
ðsÞ
0 ; is common to all subjects

within a strata. The risk of death is modeled by modulating

the baseline hazard by the regression equation, expðb0XðsÞic Þ;
which distinguishes risk among subjects within a strata and

community. The risk factor information is contained in the

matrix X
ðsÞ
ic ; and related to the hazard function by the

regression vector b. Strata are defined by single year age

groups, gender, and race. For example, we follow the

survival experience of all white females, aged 54 at the

beginning of the study in 1982 and relate their air pollution

exposure to their longevity. This process is repeated for all

possible age-gender-race combinations. The association

between the risk factors is then summarized among strata

and represented by the single regression vector b. This
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model also assumes that the association between the risk

factors, including air pollution, and mortality can be rep-

resented by a single value, b, which is constant over the

follow up period. Since differences in values of the risk

factors modulate the hazard function, this model is called

the proportional hazards model.

The proportional hazards model assumes that the sur-

vival experience among all subjects is statistically inde-

pendent. However, subjects living in the same community

intrinsically have some risk factors in common that are not

included in our model. These unmeasured factors tend to

correlate the survival experience of subjects within geo-

graphic areas. To accommodate this potential correlation or

spatial clustering of survival within a community we ex-

tend the hazard model to

h
ðsÞ
ic ðtÞ ¼ h

ðsÞ
0 expðgc þ b0XðsÞic Þ;

where gc is a random variable which represents the unex-

plained survival experience of all subjects within the cth

community. It has zero expectation and common variance

among communities, r2. It is also possible that subjects

living in communities close together will share some life-

style and environmental risk factors, which are not as

strongly shared between subjects living in communities

farther apart. To capture this type of spatial autocorrelation

we assume that the correlation between the random effects

of adjacent communities if positive, q say, and zero

otherwise. Here, adjacency is assumed if two city-specific

Thessien polygons are connected.

Statistical estimates of the regression parameters b and

dispersion parameters r2 and q are made by a two-stage

process. In stage one, estimates of the random effects were

obtained controlling for all risk factors except air pollution

(Cakmak et al. 2003). These random effect estimates are the

average residual mortality among subjects in each com-

munity after controlling for all available risk factors. The

role of air pollution in predicting mortality is then examined

in stage two using a linear simultaneous autoregressive

model in which the variance of the estimated random effects

is r2q + vc, where vc is the statistical error in estimating the

random effect for the cth community. The correlation be-

tween the estimated random effects between communities is

assumed to be modeled by q if communities are adjacent

and zero otherwise. This first stage produced a random ef-

fect estimate for each city indexed to the City of Chicago,

which had PM2.5 levels in the central part of the distribution

of pollution levels among cities. This second stage esti-

mation process is described by Jerrett et al. (2003).

Our analysis focused on five time periods (1982–1986,

1987–1990, 1991–1994, 1995–1998, and 1999–2000).

Following previous research on this cohort, RRs were

estimated for all-cause, cardiopulmonary, and lung cancer

mortality, as well as mortality from all other causes (Pope

et al. 2002). In this study, RR was estimated separately for

each period and for each cause of death with a two-stage

random effects model (Cakmak et al. 2003) that controlled

for 44 individual covariates in the first stage. These indi-

vidual-level covariates remained the same as those

described in earlier studies, comprehensively covering

smoking, other lifestyle, diet, demographic, occupational

exposure, and social confounders (Pope et al. 2002).

2.3 Exposure models

We used three exposure metrics for this analysis of 51

cities: (1) sulfate concentrations measured in 1980 as re-

ported earlier (Krewski et al. 2000); (2) PM2.5 concentra-

Fig. 1 Map of 51 cities in the

context of cities used in

previous ACS studies
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tions measured in 1999–2000 (Pope et al. 2002); and (3)

imputed PM2.5 exposures that had either matched the time

windows of follow-up (e.g., 1982–1986 exposure and fol-

low-up data) or lagged the exposure for the previous 5-year

period (e.g., 1982–1986 mortality data and average PM2.5

concentrations from 1977 to 1981). Details of prediction on

the historical PM2.5 estimates for time-matched and lagged

pollution metrics are given elsewhere (Lall et al. 2004).

Briefly the historic PM2.5 estimates were derived based on

assessing MSA-specific ratios of PM2.5/PM10 (particles

with diameter less than or equal 10 l) for co-located sites

in 1999–2000, defined as b1 and similar ratios for PM10/

TSP for 1987–1998 defined as b2. The ratio of PM2.5/TSP

equals b1 · b2. This estimation procedure predicted 43% of

the variation of 1980 PM2.5 measured values at sites ex-

cluded from the ratio model.

To ensure comparability with earlier results (e.g.,

Krewski et al. 2000; Pope et al. 2002) we also computed

RR estimates for the entire follow-up period using each of

the exposure metrics. For the imputed PM2.5 data, exposure

for the entire time period was assumed to begin in 1972

(the earliest date with pollution estimates), as many of the

subjects in the ACS study had residence in the same city

for many years before enrollment of the cohort in 1982

(Krewski et al. 2000).

2.4 Residential mobility analysis

For 100,557 of the individuals included in the ACS cohort,

zip code of residence was available in 1982, particular

archived dates (up to six through the follow-up), and in

2003. These zip codes were converted to either metropol-

itan statistical areas (MSAs) or state of residence at the

beginning and end of the period to examine patterns of

mobility in this subset. The residential mobility informa-

tion was in the form of zip codes, which were converted to

either MSAs or state of residence at the beginning and end

of the period, creating a dataset with 100,557 observations

for which mobility information was available.

Using this dataset of 100,557 subjects, the number of in-

migrants, out-migrants, net-migrants and the respective

rates of migration were calculated, at both the state and

metropolitan scale. In-migrants were defined as individuals

who have moved into a specific MSA or state, while out-

migrants were defined as individuals who have moved out

of a specific MSA or state (Newbold 2001). Net-migration

was the number of in-migrants minus the number of out-

migrants to a specific state or MSA, providing an overall

indicator of regional population loss or gain. In- and

out-migration rates were calculated as the number of in- and

out-migrants divided by the size of the population that is

‘‘at-risk’’ of moving. The at-risk population for in-migrants

was defined as the total sample size minus the number of

individuals who were initially in the MSA or state. The at-

risk population of out-migrants was the number of indi-

viduals who were initially in the MSA or state.

Logit analyses were undertaken to examine the likeli-

hood of out-migration from both the 1982 state and MSA

of residence while controlling for other covariates affecting

migration. Based upon several individual characteristics,

the analyses essentially allowed for testing whether or not

the ACS respondents followed general migration patterns

observed within the broader literature (Stiller and Boyle

1996; Koushik et al. 2001). For example, were the better

educated and the young more likely to migrate? Were

individuals in the Northeastern US more likely to out-mi-

grate than those in the South or West? This information

could provide an assessment of whether certain subgroups

were likely to be subject to greater air pollution exposure

misclassification.

Models for each time period stratified for age (<65,

65+ years) and for education (less than or equal to high

school, greater than high school) were used to further

interpret the temporal patterns in the RRs.

3 Results

3.1 Health effects

The RRs of mortality across the period of follow-up based

on the subset of the 51 cities considered were smaller than

in the full air pollution cohort considered in the previously

full ACS cohort (Krewski et al. 2000; Pope et al. 2002). For

example, all-cause mortality was significantly elevated by

6% in the larger cohort, but generally was not significantly

elevated in these sub analyses. For cardiopulmonary, RRs

were significantly increased in both the present and pre-

vious studies, but slightly larger in the earlier, larger study

(see Fig. 2).

Although overall health effects were somewhat lower in

the present as compared to the previous analysis, there was

a marked difference in the temporal pattern of RRs

between sulfates and PM2.5 (measured, imputed, and

lagged) for all-cause and cardiopulmonary deaths (Fig. 3a,

b). Sulfate RRs exhibited a large decline moving from

follow-up in the 1980s to the 1990s. In the 1990’s, sulfate

RRs were no longer elevated for these causes of death. In

contrast, PM2.5 RRs generally followed the opposite

pattern, with RRs for all three PM2.5 exposures showing

larger RRs in the later periods than the earlier ones for

cardiopulmonary deaths. Lagged PM2.5 followed a similar

pattern to the other PM models. Lung cancer displayed a

different pattern, with the effects for sulfate and PM2.5

following an inverted ‘‘U’’ shape with the smallest effects

in the first and last time window.

514 Stoch Environ Res Risk Assess (2007) 21:511–522

123



3.2 Mobility results

Overall, logit mobility models supported the broader re-

search findings from demography, suggesting that indi-

viduals in the ACS cohort were mobile, with movers in this

cohort demonstrating similar characteristics to those ob-

served in the larger population. An important consequence

of mobility in the cohort was the temporal variation in

exposure that occurred when subjects move among areas

with different air pollution levels (see Tables 1, 2).

The likelihood of out-migration between 1982 and 2003

at the state and MSA scales was similar in that all variables

except for ‘female’ (for both state and MSA analysis) were

statistically significant at the 1–2% level. In terms of per-

sonal characteristics, those who were aged 55 or greater at

baseline were less likely to make an interstate/inter-MSA
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Fig. 2 Summary of risks for
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move than their younger counterparts. This finding was

supported in the literature, since the young were able to

achieve increased benefits to migration (Long 1988). The

education variables showed that there was a higher likeli-

hood of migration among those with greater education than

those with high school education or less (the ‘reference’

category). The education variables supported the notion

that those with higher levels of education might be able to

achieve greater benefits from migration due to the potential

of increased returns to education and decreased costs to

access pertinent origin and destination information. Those

who were not married were less likely to undertake an

interstate migration than those who were married. Con-

sistent with the broader literature, those living in the New

England, Middle Atlantic or East North Central states were

more likely than those living in the rest of the United States

to undertake an interstate migration. Although not visible

in this table, southwestern and southeastern states were the

beneficiaries of these migrants.

3.3 Effect modification

We undertook further analyses for each time period strat-

ified by age and education level (see Fig. 4a–c).

For long-term exposure to PM2.5 during the period

1972–2000, we saw larger RRs in the later periods domi-

nated by individuals who were <65 years of age at

enrollment, which was consistent with past evidence on

effect modification (Krewski et al. 2000). RRs were

generally larger in the lower education groups. This was

evident in the higher RRs for the group that was younger at

enrollment, where RRs were generally larger for the later

periods of follow-up. These findings were noteworthy be-

cause they indicated higher RRs by age and by lower

education, when examination of the aggregate RRs for the

entire follow-up indicated relatively few effects. For the

PM2.5 1999–2000 estimates, there was a less consistent

pattern, but individuals who were older at enrollment

were somewhat more likely to have higher RRs in earlier
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Fig. 3 a Relative risks for all-cause, cardiopulmonary and lung

cancer deaths estimated for five time periods of the follow-up (1982–

1986, 1987–1990, 1991–1994, 1995–1998, and 1999–2000) with

measured exposures. b Relative risks for all-cause, cardiopulmonary

and lung cancer deaths estimated for five time periods of the follow-

up (1982–1986, 1987–1990, 1991–1994, 1995–1998, and 1999–2000)

with imputed exposures
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periods, particularly those with higher education. The

opposite was true for those <65 years of age at enrollment,

with larger RRs in the later follow-up periods, and higher

RRs concentrated in the low-education group. With the

exception of the older high education group, nearly all

subgroups had higher RRs in the earlier periods. Those

who were older at enrollment with lower education had the

largest RRs.
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Fig. 3 continued

Table 1 Logit results of out-

migration from a state, 1982–

2003

New England states: New

England: Maine, New

Hampshire, Vermont,

Massachusetts, Rhode Island,

Connecticut. Middle Atlantic

States: New York,

Pennsylvania, New Jersey. East

North Central states: Wisconsin,

Illinois, Michigan, Indiana,

Ohio. Source: Derived from

CPS and ACS nutritional sub

cohort merged datasets

Parameter Estimate Error Pr > v2

Intercept –2.0821 0.0261 <0.0001

Aged 55 and older –0.1884 0.0190 <0.0001

Vocational/trade school or some college 0.3275 0.0249 <0.0001

College degree 0.3382 0.0267 <0.0001

Graduate school 0.4319 0.0272 <0.0001

Female 0.000600 0.0189 0.9746

Non-married: single, divorced, separated, or widowed –0.0961 0.0387 0.0131

Out-migration from New England states 0.5961 0.0363 <0.0001

Out-migration from Mid Atlantic states 0.0574 0.0219 0.0088

Out-migration from East North Central states 0.2194 0.0254 <0.0001

N 100,557

Rho-squared 0.00896

Likelihood ratio 733.3871

% Predicted 54.4
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4 Discussion

Overall estimated RRs in the 51 cities used in this study

were lower than in previous national studies. The lower RR

estimates probably resulted from the exclusion of cities in

the Ohio River Valley, which tended to demonstrate larger

RRs from air pollution than other geographic regions

(Krewski et al. 2000; Pope et al. 2002). Given the differ-

ence between our overall risk estimates for the entire

period and those of earlier national studies, we also

investigated the same five exposure windows using the

larger set of 151 cities with sulfate measurements and 116

cities with PM2.5, which were used in earlier studies. In

both instances, we observed larger RRs than in the subset

of cities used here. The temporal pattern in the risks was

similar although less pronounced in the larger sets of cities

used earlier (cf. Krewski et al. 2000; Pope et al. 2002).

Although the risks in the 51 cities used in this analysis were

attenuated, we continued to see significant associations

with mortality for most of the exposure estimates, but these

had measurable variation over time.

Sulfate effects on all-cause and cardiopulmonary mor-

tality appeared to be larger and more significant in earlier

than in later periods of follow-up. In contrast, PM2.5 dis-

played an opposite pattern, with larger health effects in the

later periods. Although RRs generally had overlapping

confidence intervals for the periods under investigation, the

opposite patterns between the two pollutants raise some

interesting possibilities for interpretation, which we expand

upon below.

Unlike the other causes of death, the RRs for lung

cancer mortality followed an inverted U-shaped pattern,

especially for sulfate. This different RR pattern for cancer

may reflect the protracted multifactorial process of disease

formation and was consistent with recent studies investi-

gating the temporal dose-response functions in other mor-

tality cohorts (Laden et al. 2006).

While ambient PM2.5 levels declined in many parts of

the United States (Lall et al. 2004), mobile sources were

now the largest contributors to pollution in urban areas

(Park and Kim 2005). Mobile source emissions contained

more toxicologically active transition metals, polycyclic

aromatic hydrocarbons, quinones, and ultrafine particles

(Nel 2005). The decline in sulfate effects may have been

the result of dramatic reductions that occurred through the

1990s in response to the acid rain control program (EPA

2005). From the perspective of assessing accountability,

this combination of events might be interpreted as

government programs to reduce sulfate partly achieving

their goal. In contrast, the relatively larger contributions

from transportation sources to PM2.5 may have increased

the toxicity of ambient particles and led to the larger effects

observed here in later periods.

Drawing such conclusions from the data, however, is

complicated by uncertainties that prevented direct attribu-

tion of the health effects from changes in government

regulations or societal patterns of emissions. We offer three

alternative explanations for the changing temporal patterns

of RRs.

4.1 Robust survivor explanation

Mortality in the early portion of the follow-up may have

concentrated in areas of high susceptibility and high

exposure. Sulfate pollution tended to be highest in areas of

relatively low educational achievement (Jerrett and

Finkelstein 2005). Our subgroup analysis supported the

conclusion that subjects in the low education-higher age

group had the largest RR from air pollution (RR: 1.37, 95%

CI: 1.11–1.69 over a 10 lg/m3 contrast). Assessment of

effect modification by age and education indicated higher

RRs at older ages (whether this was for the early follow-up

for those greater than 65 years of age at enrollment, or the

later follow-up for subjects <65 in 1982). For sulfate, there

was also evidence that older individuals with low education

had much higher RRs earlier in the follow-up, and with the

exception of the high education older group, all other

groups had higher RRs earlier in the follow-up. The com-

bination of heightened risk in the low education group due

to various health threats may have combined with higher

exposure to affect more subjects in the earlier part of the

follow-up. This explanation did not account for the in-

creases in the RRs from PM2.5 over the follow-up, but

would explain the declining risks for sulfate.

4.2 Environmental inequality-mobility explanation

We have explored the mobility of subjects within a subset

of the ACS cohort where complete tracking of residential

location was available (N ~ 100,557). This analysis

Table 2 Logit model results of out-migration from a metropolitan

area, 1982–2003 (with regional effects)

Parameter Estimate SE Pr > v2

Intercept –2.6412 0.0281 <0.0001

Aged 55+ –0.1176 0.0243 <0.0001

Some College 0.3655 0.0325 <0.0001

University Degree 0.3606 0.0347 <0.0001

Graduate Degree 0.4806 0.0346 <0.0001

Not married 0.1183 0.0457 0.0096

North East US 0.0738 0.0251 0.0032

Rho-squared 0.007

Likelihood Ratio 274.68

N 91,652

% Concordant 48.8
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revealed that many areas of the country with the highest

sulfate pollution levels were also subject to large out-

migration, particularly out of the Midwestern and North-

eastern states of the ‘‘rust belt’’ (Getis and Getis 1995).

Thus, exposure misclassification may have increased over

time, as the ACS cohort only had complete residential

histories for the initial enrollment period in 1982. In

predicting the propensity to migrate, older persons and

those with lower education appeared less likely to migrate.

These subjects may have had less exposure measurement

error than other subjects in the ACS cohort, potentially

contributing to larger health effects for sulfate in the earlier

periods. For PM2.5, many of the areas receiving migrants

also experienced relatively little improvement in PM2.5 and
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Fig. 4 a Relative risks using SO4 exposures for cardiopulmonary

outcome stratified by age and education for five time periods.

b Relative risks using PM2.5 (1999–2000) exposures for cardiopul-

monary outcome stratified by age and education for five time periods.

c Relative risks using average PM2.5 (1972–2000) exposures for

cardiopulmonary outcome stratified by age and education for five

time periods
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were to some extent worsening compared to other parts of

the country (Lall et al. 2004). Those areas in the southeast,

southwest, and southern California experienced both higher

in-migration and lower overall improvements in PM2.5

levels. This may have in part explained why PM2.5 RRs

increased through the 1990s.

Due to data constraints we were unable to assess either

mobility or exposure at the within-city scale. It seems likely

that some greater level of movement may have occurred

within cities, but this is not taken into account here. Like-

wise, the within-city exposure contrasts, which have been

associated with even larger risks (Jerrett et al. 2005), were

not controlled in this analysis. For most locations, sulfate

and PM2.5 will vary only slightly within cities compared to

the between city variation, but for the larger MSAs such as

New York and Los Angeles, there may be additional error

that is not taken into account in this analysis. Future studies

will need to address this within-city phenomenon if health

benefits are to be linked to air quality improvements.

4.3 Temporal measurement error explanation

In most instances, we have observed the largest health

effects for the time windows closest to the actual moni-

toring period. Sulfate RRs were largest in the earlier

periods closest to the 1980 measurement, while the PM2.5

RRs were generally largest in the latest period closest to the

actual monitoring period of 1999–2000. A similar effect

was present in the imputed data, which was calibrated

against the 1999–2000 data, and the data for this window

were virtually the same as the measured values (Lall et al.

2004). We could not test this explanation directly due to

lack of direct monitoring data for the entire period. The

pattern across all RRs nonetheless indicated this may have

been another plausible explanation for the observed tem-

poral pattern in the RRs.

5 Conclusion

Growing interest in measuring health benefits from air

quality improvements resulting from government regula-

tions has prompted a series of ‘‘intervention’’ studies

(Jaakkola et al. 1999; Heinrich et al. 2000; Clancy et al.

2002; Hedley et al. 2002; Heinrich et al. 2002; Pope et al.

2002; Frye et al. 2003). With few exceptions, these studies

have examined the short-term or acute benefits of air

pollution regulations or of natural experiments such as

labor strikes at steel mills. Although important, findings

from these studies may not apply directly to most of the air

quality improvements that result in gradual decreases over

many years. However, when the follow-up period is long,

many other factors can obfuscate the linkage of air quality

improvements to health benefits.
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First, the survivor-harvesting explanation seems ger-

mane for explaining whether the dynamics of individual

vulnerability in the cohort itself lead to observed RR

patterns over time. Second, the environmental exposure-

mobility hypothesis illustrates how more susceptible

individuals may be less likely to move and therefore

experience less measurement error. Finally, the temporal

exposure misclassification explanation would alternatively

imply a classical or non-differential error structure that

may explain why larger health effects are observed closer

to the period of pollution measurement.

This high susceptibility in the low education group due to

various health threats may combine with higher exposure to

harvest more subjects in the earlier part of the follow-up.

These subjects would be more susceptible and receive high

exposures, possibly leading to early onset of death. Studies

attempting to ascribe the health benefits of incremental air

quality improvements, which constitute the majority of

cases, will have to examine closely the inter-correlations

among these variables. In particular, understanding the

interplay among education, age, mobility, and subsequent

exposure error constitutes a priority for future research. All

these factors can potentially influence the estimation of

health effects from air pollution, sometimes directly and

other times through mediating variables. The complexities

of these relationships and the subsequent myriad of poten-

tial explanations underscore the uncertainties of ascribing

mortality reductions to air quality improvements.

This paper has investigated the spatial and temporal

patterns of RRs from exposure to four different air pollu-

tion metrics in the ACS cohort. We found higher RRs for

sulfate exposure in the earlier periods of the follow-up, and

a lower RR in the 1990s for this pollutant. In contrast, the

RRs for PM2.5 (measured directly in 1999–2000 and im-

puted for time-matched and lagged windows) increase

through the follow-up period. The potential susceptibilities

of underlying populations and the measurement error that

results from mobility in the cohort have been explored.

These analyses suggest a complicated picture and at least

three possible explanations for the changing risk patterns.

By exploring these issues though an empirical analysis

of the ACS cohort, we have illustrated the uncertainties

of interpreting changing risk patterns over time and of

ascribing these patterns to changes in environmental reg-

ulations and in ambient air quality. In future research on

the benefits of air quality, more emphasis will have to be

placed on understanding the interplay of mobility, educa-

tion, susceptibility, and age structures in the formation of

health effects from air pollution.
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