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Spatial Analysis of Air Pollution and
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Background: The assessment of air pollution exposure using only
community average concentrations may lead to measurement error
that lowers estimates of the health burden attributable to poor air
quality. To test this hypothesis, we modeled the association between
air pollution and mortality using small-area exposure measures in
Los Angeles, California.
Methods: Data on 22,905 subjects were extracted from the Amer-
ican Cancer Society cohort for the period 1982–2000 (5,856 deaths).
Pollution exposures were interpolated from 23 fine particle (PM2.5)
and 42 ozone (O3) fixed-site monitors. Proximity to expressways
was tested as a measure of traffic pollution. We assessed associa-
tions in standard and spatial multilevel Cox regression models.
Results: After controlling for 44 individual covariates, all-cause
mortality had a relative risk (RR) of 1.17 (95% confidence interval �
1.05–1.30) for an increase of 10 �g/m3 PM2.5 and a RR of 1.11
(0.99–1.25) with maximal control for both individual and contextual
confounders. The RRs for mortality resulting from ischemic heart
disease and lung cancer deaths were elevated, in the range of
1.24–1.6, depending on the model used. These PM results were
robust to adjustments for O3 and expressway exposure.

Conclusion: Our results suggest the chronic health effects associ-
ated with within-city gradients in exposure to PM2.5 may be even
larger than previously reported across metropolitan areas. We ob-
served effects nearly 3 times greater than in models relying on
comparisons between communities. We also found specificity in
cause of death, with PM2.5 associated more strongly with ischemic
heart disease than with cardiopulmonary or all-cause mortality.

(Epidemiology 2005;16: 727–736)

A review of the literature on the chronic health effects of
ambient air pollution suggests that studies using the

American Cancer Society (ACS) cohort to assess the relation
between particulate air pollution and mortality rank among
the most influential and widely cited. The original study1 (a
reanalysis that introduced new random-effects methods and
spatial analytic techniques2,3) and more recent studies with
longer follow up and improved exposure data have all dem-
onstrated air pollution effects on all-cause and cause-specific
mortality.4,5 As a result of this robust association and a lack
of other studies on the long-term effects, the ACS studies
together with the Six-Cities study6 have been important for
government regulatory interventions such as the U.S. Envi-
ronmental Protection Agency’s National Air Quality Stan-
dard for Fine Particles. The ACS studies have also been used
by the World Health Organization as a basis for estimating
the burden of mortality attributable to air pollution.7

The assessment of air pollution exposure using only
community average concentrations likely underestimates the
health burden attributable to elevated concentrations in the
vicinity of sources.8,9 Health effects may be larger around
sources, and these effects are diminished when using average
concentrations for the entire community. Previous ACS stud-
ies have relied on between-community exposure contrasts at
the scale of a metropolitan area giving all residents of a city
the same exposure concentrations. Exposure to air pollution,
however, may vary spatially within a city,10–14 and these
variations may follow social gradients that influence suscep-
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tibility to environmental exposures.3 Residents of poorer
neighborhoods may live closer to point sources of industrial
pollution or roadways with higher traffic density.15 This
exposure misclassification along social gradients may ex-
plain the finding of effect modification by educational status
in earlier ACS studies.2,16 The spatial correspondence be-
tween high exposure and potentially susceptible populations
within cities may further bias estimates that rely on central
monitors to proxy exposure over wide areas. Theoretically,
classic exposure measurement error induced by central mon-
itors may also bias results toward the null.17

Given the potential of the metropolitan scale to bias
health effect estimates, we have assessed the association
between air pollution and mortality at the within-community
or intraurban scale. We sought an urban location with suffi-
cient geographic scope, air pollution data, and enough ACS
subjects to test the association. Los Angeles (LA), California,
met these selection criteria. The region has high pollution
levels, large intraurban gradients in exposure over a wide
geographic area, and strong public awareness that air pollu-
tion has serious public health consequences.18

METHODS

Cohort Data
We extracted health data from the ACS Cancer Preven-

tion II survey for metropolitan LA at the zip code-area scale
(zip codes are used for U.S. mail delivery; average population
per zip code in LA is approximately 35,000, with an average
area of approximately 22.5 km2). We constructed distribu-
tion-weighted centroids using spatial boundary files based on
1980 and 1990 definitions. We were able to assign exposure
to 267 zip code areas with a total of 22,905 subjects (5856
deaths based on follow up to 2000). Some subjects reported
only postal box addresses and were therefore excluded. These
subjects had been enrolled in 1982 along with over one
million others as part of the ACS II survey. Similar to earlier
ACS analyses, availability of air pollution data and other
relevant information led to the subset of study subjects to be
used in the health effects research. Although the ACS cohort
is not representative of the general population, the cohort
allows for internally valid comparisons within large samples
of the American population. This study was approved by the
Ethics Board of the Ottawa General Hospital, Canada. Sub-
jects had given informed consent at enrollment into the study.

Control for Confounding
We used 44 individual confounders identified in earlier

ACS studies of air pollution health effects.4 These variables
include lifestyle, dietary, demographic, occupational, and
educational factors that may confound the air pollution–
mortality association. We had more than 10 variables that
measure aspects of smoking. Sensitivity analyses revealed

that removal of individual variables had little influence on the
estimated pollution coefficients; therefore, to promote com-
parability with results from earlier studies, we report the
results with this standard set of 44 variables.

We also assembled 8 ecologic variables for the zip code
areas to control for “contextual” neighborhood confounding.
“Contextual” effects occur when individual differences in
health outcome are associated with the grouped variables that
represent the social, economic, and environmental settings
where the individuals live, work, or spend time (eg, poverty
or crime rate in a neighborhood).19–22 These contextual
effects often operate independently from (or interactively
with) the individual-level variables such as smoking. The
ecologic variables used represented constructs identified as
important in the population health literature and previously
tested as potential confounders with the ACS dataset at the
metropolitan scale.23,24 These include income, income in-
equality, education, population size, racial composition
(black, white, Hispanic), and unemployment.3 A new variable
measuring potential exposure misclassification by the propor-
tion having air conditioning was also tested. Similar variables
have been in a metaanalysis of acute effects,25 on the premise
that air-conditioned houses are more tightly sealed and have
lower penetration of particles indoors. A recent study of
personal exposures in LA reported large reductions in pene-
tration of particles for air-conditioned houses.26 This variable
adds partial control for the impact of air conditioning, which
may relate both to health outcomes (through prevention of
heat stroke) and to air pollution (because high air pollution
concentrations and lower proportions of air conditioning are
related in our study area). We thus expected the proportion of
air conditioning in the zip code area to correlate with lower
PM exposures and effects. We also computed principal com-
ponents of all 8 variables to provide maximal control for
confounding while avoiding multicollinearity among the eco-
logic variables.27,28

Exposure Assessment
To derive exposure assessments, we interpolated PM2.5

data from 23 state and local district monitoring stations in the
LA basin for the year 2000 using 5 interpolation methods:
bicubic splines, 2 ordinary kriging models, universal kriging
with a quadratic drift, and a radial basis function multiquadric
interpolator. We emphasized kriging interpolation because
this stochastic method produces the best linear unbiased
estimate of the pollution surface.29 After crossvalidation, we
used a combination of universal kriging and multiquadric
models. This approach takes advantage of the local detail in
the multiquadric surface and the ability to handle trends in the
universal surface. We averaged estimated surfaces based on
25-m grid cells. We conducted sensitivity analysis using only
the universal estimate and found the results to be similar;
therefore, only the findings from the combined model are
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reported. Sensitivity analyses were also implemented with the
kriging variance. Exposure assignments were downweighted
with larger errors in exposure estimates in these analyses (ie,
weight equal to the inverse of the standard error in the
universal kriging estimate).

Although O3 has had few associations in earlier ACS
studies using between-city contrasts,1,2,4 exposure to this
pollutant is considered a health threat in the LA region, which
has some of the highest levels in the United States.18 For O3,
we obtained data at 42 sites in and around the LA basin from
the California Air Resources Board database. We interpolated
2 surfaces using a universal kriging algorithm: one based on
the average of the 4 highest 8-hour concentrations over the
year 2000 and another based on the expected peak daily
concentration, which is a statistical measure designed to
assess the likely exceedance of the 8-hour average at the site
based on the previous 3 years (1999–2001). Both measures
are used as a basis for either federal or state designation of
nonattainment areas. They both capture extreme events, but
the expected peak daily concentration provides more stability
for estimation of spatial patterns than the 1-year measures
based on the 4 highest days. Few studies of chronic effects
have found significant ozone effects, although acute effects of
a small magnitude have been observed.30 Thus, it seems
plausible that an ozone effect would be manifest in those
areas most likely to experience exceedances.

Finally, we assessed the impact of traffic by assigning
buffers that included zip code-area centroids within either
500 or 1000 meters of a freeway. The U.S. Bureau of the
Census feature class codes define freeways as having “limited
access,” a numbered assignment, and a speed limit of greater
than 50 miles per hour.31 This distance from the zip code-area
centroid to the freeway approximated exposure to traffic
pollution, which may exert independent effects in addition to
pollutants such as PM2.5 and O3 that vary over larger areas.8

Complete residential history information was unavailable
for the entire cohort, although we do have information on
whether respondents moved between enrollment and 1992 or
thereafter (approximately 5633 in LA). Of this group, only 16%
moved during follow up, and this diminishes the potential for
exposure misclassification resulting from residential mobility.

Analytic Approach
We used Cox proportional hazards regression for our

main analyses of association between air pollution and mor-
tality.32 Because the units of analyses were small zip code
areas and previous analyses had indicated spatial autocorre-
lation in the residual variation of some health effects models,
we also developed and used a new spatial random effects Cox
model as a crossvalidation of the standard model. We have
previously shown that survival experience clusters by com-
munity and is spatially autocorrelated between communi-
ties.2,3 Lack of statistical control for these factors can bias the

estimates of air pollution effects and underestimate associated
standard errors.3,33 To characterize the statistical error struc-
ture of survival data, novel statistical methodology and com-
puter software have been developed to incorporate spatial
clustering at the zip code area. Our model can be expressed
mathematically in the form

hij s(t) � h0 s(t) �j exp(��xij s)

where hij is the hazard function or instantaneous hazard proba-
bility of death for the ith subject in the jth ZCA, whereas s
indicates the stratum (defined by sex, race, and age). Here h0, s(t)
is the baseline hazard function. The �j are positive random
effects representing the unexplained variation in the response
among neighborhoods, in this case zip code areas. Only the
moments of the random effects need to be specified within our
modeling framework: E(�j) � 1 and Var(�j) � �2. The vector xij

represents the known risk factors for the response such as air
pollution, smoking habits, and diet. The regression parameter
vector is denoted by �. Estimates of the regression vector �,
random effects, their variance, and correlation parameter are
obtained by methods previously used for random-effects sur-
vival models.33 Thiessen polygons, which ensure that all points
within the polygon are closer to the centroid of that polygon than
to any other centroid, were used to assign first-order nearest
neighbor contiguity between the zip code areas. These were
derived using ArcView 3.2 (ESRI Corp., Redlands, CA). The
standard Moran’s I tests of spatial autocorrelation were applied
to the random effects.

RESULTS
Figure 1 illustrates the pollution surface used in our

main analysis, and the Appendix Figure (available with the

FIGURE 1. PM2.5 exposure surface for Los Angeles interpolated
with a hybrid universal–multiquartic model.
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TABLE 1. Mortality Relative Risk Associated With a 10-�g/m3 Increase of PM2.5 Concentrations Based on 267 Zip Code Areas
in Los Angeles in the American Cancer Society Cohort (1982–2000 follow up) for Various Causes of Death With Adjustment
for Covariates

Covariates

Cause of Death*

All Causes
(n � 5856)

RR (95% CI)

IHD
(n � 1462)

RR (95% CI)

Cardiopulmonary
(n � 3136)

RR (95% CI)

Lung Cancer
(n � 434)

RR (95% CI)

Digestive Cancer
(n � 429)

RR (95% CI)

PM2.5 only 1.24 (1.11–1.37) 1.49 (1.20–1.85) 1.20 (1.04–1.39) 1.60 (1.09–2.33) 1.29 (0.87–1.90)
44 individual covariates 1.17 (1.05–1.30) 1.39 (1.12–1.73) 1.12 (0.97–1.30) 1.44 (0.98–2.11) 1.18 (0.79–1.75)

�Air conditioning 1.17 (1.05–1.31) 1.41 (1.13–1.76) 1.15 (0.99–1.33) 1.42 (0.96–2.08) 1.14 (0.76–1.70)
�Percent black 1.16 (1.05–1.29) 1.39 (1.11–1.72) 1.12 (0.97–1.30) 1.45 (0.99–2.13) 1.18 (0.79–1.75)
�Percent white 1.15 (1.03–1.28) 1.36 (1.09–1.70) 1.10 (0.95–1.28) 1.51 (1.02–2.23) 1.16 (0.78–1.74)
�Percent Hispanic 1.15 (1.02–1.28) 1.33 (1.06–1.67) 1.11 (0.95–1.29) 1.46 (0.98–2.20) 1.12 (0.74–1.71)
�Percent unemployed 1.15 (1.03–1.28) 1.37 (1.09–1.71) 1.13 (0.97–1.31) 1.33 (0.90–1.97) 1.18 (0.78–1.77)
�Mean income 1.17 (1.05–1.30) 1.39 (1.12–1.73) 1.13 (0.97–1.30) 1.44 (0.98–2.11) 1.19 (0.80–1.76)
�Total population 1.17 (1.05–1.30) 1.38 (1.11–1.72) 1.12 (0.96–1.29) 1.45 (0.99–2.12) 1.20 (0.80–1.78)
�Income inequality 1.14 (1.02–1.28) 1.31 (1.04–1.64) 1.07 (0.92–1.25) 1.33 (0.90–1.98) 1.21 (0.80–1.81)
�Percent postsecondary

education
1.16 (1.05–1.29) 1.38 (1.11–1.72) 1.12 (0.97–1.30) 1.42 (0.97–2.08) 1.16 (0.78–1.72)

�All social factors (principal
component analysis)

1.15 (1.03–1.29) 1.32 (1.05–1.66) 1.10 (0.94–1.28) 1.43 (0.96–2.13) 1.20 (0.80–1.80)

�Air conditioning, mean
income, percent postsecondary
education, social factor (low
Hispanic–high income)

1.11 (0.99–1.25) 1.26 (0.99–1.61) 1.08 (0.92–1.27) 1.20 (0.79–1.82) 1.13 (0.74–1.73)

�Parsimonious contextual
covariates

1.11 (0.99–1.25) 1.25 (0.99–1.59) 1.07 (0.91–1.26) 1.20 (0.79–1.82) 1.14 (0.74–1.74)

Copollutant control
44 individual covariates � O3

(expected peak daily
concentration) � PM2.5

1.20 (1.07–1.34) 1.45 (1.15–1.82) 1.19 (1.02–1.38) 1.47 (0.98–2.20) 1.16 (0.77–1.77)

44 Individual covariates � O3

(average of 4 highest 8 h
maxima) � PM2.5

1.18 (1.06–1.32) 1.42 (1.14–1.78) 1.15 (0.99–1.34) 1.52 (1.02–2.26) 1.17 (0.78–1.76)

44 individual covariates �
intersection with freeways
within 500 m � PM2.5

1.17 (1.05–1.31) 1.38 (1.11–1.72) 1.13 (0.97–1.31) 1.46 (0.99–2.16) 1.21 (0.81–1.80)

Copollutant risk estimates
O3 (expected peak daily

concentration)
0.98 (0.96–1.01) 0.97 (0.93–1.02) 0.97 (0.94–0.99) 0.99 (0.91–1.07) 1.01 (0.93–1.09)

O3 (average of 4 highest 8 h
maxima)

0.99 (0.98–1.01) 0.98 (0.95–1.02) 0.99 (0.96–1.01) 0.97 (0.91–1.03) 1.01 (0.95–1.07)

Intersection with freeways within
500 m

0.99 (0.88–1.11) 0.90 (0.71–1.14) 0.92 (0.77–1.08) 1.44 (0.94–2.21) 0.84 (0.53–1.35)

Intersection with freeways within
1000 m

0.98 (0.89–1.06) 1.05 (0.89–1.24) 0.98 (0.88–1.11) 0.94 (0.69–1.30) 0.88 (0.63–1.22)

continued on next page

*ICD-9 code for ischemic heart disease (IHD) 410–414; for cardiopulmonary 400–440, 460–519; for lung cancer 162; for digestive cancer 150–159; for
other cancers 140–149, 160, 161, 163–239; for endocrine 240–279; for diabetes 250; for digestive 520–579; male accidents 800�; female accidents 800�.

Jerrett et al Epidemiology • Volume 16, Number 6, November 2005

© 2005 Lippincott Williams & Wilkins730



online version of this article) illustrates the absolute and
relative standard errors of estimation for the interpolated
universal kriging surface. Approximately 50% of the mod-
eled surface has errors that are less than 15% of the monitored
value, whereas 67% of the surface lies within 20% of the

monitored values. For the most part, absolute standard errors
for the densely populated areas of the study region are less
than 3 �g/m3. Only on the periphery of the study area do
errors become large compared with monitored values, but
these places have very few of our study subjects. Interest-

TABLE 1. Continued

Cause of Death*

Other Cancers
(n � 992)

RR (95% CI)

Endocrine
(n � 95)

RR (95% CI)

Diabetes
(n � 57)

RR (95% CI)

Digestive
(n � 151)

RR (95% CI)

Male Accidents
(n � 75)

RR (95% CI)

Female Accidents
(n � 47)

RR (95% CI)

All Others
(n � 497)

RR (95% CI)

1.09 (0.85–1.40) 3.22 (1.31–7.91) 2.38 (0.76–7.52) 2.17 (1.11–4.26) 1.52 (0.61–3.83) 1.08 (0.35–3.31) 1.11 (0.74–1.67)
1.06 (0.82–1.36) 2.75 (1.10–6.87) 2.10 (0.64–6.87) 1.98 (1.01–3.91) 1.35 (0.53–3.43) 0.86 (0.25–2.94) 1.13 (0.75–1.69)
1.06 (0.82–1.37) 2.73 (1.09–6.84) 2.10 (0.64–6.94) 1.95 (0.98–3.85) 1.50 (0.58–3.89) 1.01 (0.29–3.58) 1.05 (0.69–1.59)
1.05 (0.82–1.36) 2.70 (1.07–6.79) 2.09 (0.63–6.89) 2.02 (1.03–3.98) 1.29 (0.50–3.31) 0.91 (0.27–3.06) 1.10 (0.73–1.66)
1.05 (0.81–1.36) 2.55 (1.00–6.51) 2.05 (0.61–6.82) 1.96 (0.98–3.92) 1.19 (0.46–3.12) 0.93 (0.27–3.23) 1.10 (0.72–1.68)
1.04 (0.80–1.36) 2.60 (1.00–6.75) 2.07 (0.60–7.15) 1.72 (0.85–3.51) 1.41 (0.53–3.76) 0.71 (0.20–2.53) 1.17 (0.76–1.80)
1.01 (0.78–1.31) 2.27 (0.89–5.78) 1.82 (0.55–6.08) 1.83 (0.91–3.65) 1.51 (0.58–3.95) 0.88 (0.25–3.08) 1.10 (0.73–1.67)
1.07 (0.83–1.37) 2.61 (1.07–6.39) 2.06 (0.64–6.65) 1.99 (1.00–3.94) 1.35 (0.53–3.44) 0.80 (0.22–2.83) 1.12 (0.75–1.69)
1.06 (0.83–1.37) 2.76 (1.11–6.86) 2.10 (0.64–6.87) 2.02 (1.02–3.98) 1.35 (0.53–3.44) 0.72 (0.21–2.49) 1.12 (0.74–1.69)
1.08 (0.83–1.40) 2.84 (1.12–7.21) 2.15 (0.64–7.19) 1.98 (0.98–3.99) 1.29 (0.50–3.37) 0.74 (0.20–2.71) 1.15 (0.75–1.75)
1.05 (0.82–1.36) 2.72 (1.10–6.76) 2.07 (0.64–6.70) 1.99 (1.01–3.93) 1.41 (0.55–3.65) 0.89 (0.26–3.12) 1.14 (0.75–1.71)

1.06 (0.82–1.38) 2.50 (0.99–6.32) 2.12 (0.64–7.07) 1.88 (0.92–3.83) 1.17 (0.43–3.20) 0.59 (0.15–2.23) 1.21 (0.79–1.86)

1.04 (0.79–1.38) 2.40 (0.92–6.27) 1.92 (0.55–6.73) 1.55 (0.74–3.26) 1.89 (0.66–5.40) 0.64 (0.15–2.79) 1.11 (0.72–1.72)

1.06 (0.80–1.40) 2.29 (0.88–5.95) 1.79 (0.52–6.21) 1.55 (0.74–3.24) 1.88 (0.66–5.36) 0.70 (0.17–2.86) 1.10 (0.72–1.70)

1.08 (0.83–1.41) 2.59 (1.01–6.63) 2.17 (0.63–7.40) 1.91 (0.94–3.89) 1.35 (0.50–3.61) 1.12 (0.30–4.21) 0.95 (0.64–1.39)

1.07 (0.83–1.39) 2.76 (1.08–7.00) 2.29 (0.68–7.70) 1.82 (0.90–3.67) 1.29 (0.49–3.40) 0.98 (0.28–3.48) 0.98 (0.67–1.43)

1.08 (0.83–1.39) 2.49 (0.98–6.32) 1.82 (0.55–6.02) 2.20 (1.11–4.37) 1.34 (0.53–3.43) 0.73 (0.21–2.54) 1.02 (0.71–1.48)

0.99 (0.94–1.04) 1.05 (0.88–1.24) 0.98 (0.79–1.22) 1.02 (0.90–1.17) 1.00 (0.83–1.21) 0.87 (0.68–1.12) 1.06 (0.99–1.14)

0.99 (0.95–1.03) 1.00 (0.88–1.14) 0.94 (0.79–1.12) 1.06 (0.95–1.17) 1.03 (0.88–1.20) 0.93 (0.77–1.13) 1.04 (0.99–1.10)

1.19 (0.89–1.59) 0.64 (0.26–1.62) 0.45 (0.12–1.70) 2.54 (1.10–5.85) 0.57 (0.17–1.91) 0.87 (0.28–2.70) 0.87 (0.58–1.29)

0.90 (0.72–1.12) 1.55 (0.88–2.75) 1.77 (0.83–3.76) 0.49 (0.24–0.98) 1.05 (0.51–2.15) 2.02 (0.89–4.60) 1.15 (0.87–1.53)
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ingly, the range of exposure within LA (20 �g/m3) exceeds
what we observed in previous studies based on contrasts
among 116 cities (16 �g/m3).4

Results for all-cause and cause-specific deaths are re-
ported in Table 1. This table shows the PM2.5 effect with
varying levels of control for confounding. Relative risks
(RRs) are expressed as 10 �g/m3 exposure contrasts in PM2.5

followed by the 95% confidence interval (95% CI). Using the
example of all-cause mortality and with each succeeding
stage, including the previous individual-level controls, we
find that for PM2.5 alone and controlling just for age, sex, and
race, the RR is 1.24 (95% CI � 1.11–1.37), whereas the RR
with the 44 individual confounders4 is 1.17 (1.05–1.30). All
subsequent results include the 44 individual-level control
variables and one or more ecologic variables. For example,
with 44 individual variables and the ecologic variable of
unemployment, the RR of PM2.5 is 1.15 (1.03–1.28). When
we add 4 social factors extracted from the principal compo-
nent analysis (and accounting for 81% of the total variance in
the social variables), the RR is 1.15 (1.03–1.29). Including all
ecologic variables associated with mortality in bivariate mod-
els reduces the pollution coefficient to RR of 1.11 (0.99–
1.25). Finally, for the parsimonious model that includes
ecologic confounder variables that both reduce the pollution
coefficient and have associations with mortality, the RR is
1.11 (0.99–1.25).

Comparing these results directly with the earlier anal-
yses using between-community contrasts, the health effects
are nearly 3 times greater for this analysis (ie, 17% increase
compared with 6% in earlier studies in models that control for
the 44 individual confounders). With control for neighbor-
hood confounders, effect estimates are still approximately
50% to 90% higher than in previous analyses.

In models with only individual covariates and PM2.5,
some residual spatial autocorrelation was present in the ran-
dom effects from the model clustered on zip code area. We
attempted to remove this autocorrelation by fitting a model
with a � autocorrelation term that used mortality information
from nearest neighbors as a predictor of mortality in the
ZCA j, but the autocorrelation persisted (results not shown).
When contextual socioeconomic status variables were in-
cluded in the model, however, the Moran’s I tests revealed no
significant spatial autocorrelation. Table 2 shows the results
of the Moran’s I test for all-cause and ischemic heart disease
mortality. Visual inspection of the random effects, �j, con-
firmed the results from the Moran’s I testing.

Sensitivity analyses using weighted estimation with
weights equal to the inverse of the standard error on
the universal kriging exposure model demonstrated that
the risk estimates were robust to measurement error in the
exposure estimate (results not shown). Point estimates
remained elevated.

DISCUSSION
Our results suggest that the chronic health effects as-

sociated with intraurban gradients in exposure to PM2.5 may
be even larger than previously reported associations across
metropolitan areas. Using the direct comparison to previous
ACS studies, we see effects that are nearly 3 times larger than
in models relying on between-community exposure contrasts.
We also note convincing evidence of specificity in these
health effects, with a stronger association between air pollu-
tion and ischemic heart disease than for the more general
measures of cardiopulmonary deaths or all-cause mortality
(Fig. 2 displays the ordering in the risks presented in the
tables). These findings concur with recent studies at the

TABLE 2. Results of the Spatial Autocorrelation Analysis on the Random Effects With Various Levels of Control
for Confounding

Model

PM Effect
RR

(95% CI)
Sigma

Squared

First-Order Neighborhood
Matrix

Second-Order
Neighborhood Matrix

Spatial
Autocorrelation

Moran’s I
Normal
P Value

Spatial
Autocorrelation

Moran’s I
Normal
P Value

All-cause mortality
44 individual covariates — 0.00701 0.078 0.021 0.038 0.812
PM2.5 � 44 individual covariates 1.165 (1.027–1.321) 0.00442 0.073 0.030 0.030 0.157
PM2.5 � 44 individual covariates �

parsimonious contextual covariates
1.120 (0.996–1.260) 0.00050 0.016 0.571 �0.017 0.572

IHD mortality
44 individual covariates — 0.00476 0.025 0.419 0.037 0.154
PM2.5 � 44 individual covariates 1.391 (1.120–1.726) 0.00182 0.008 0.735 0.017 0.382
PM2.5 � 44 individual covariates �

parsimonious contextual covariates
1.269 (1.005–1.602) 0.00120 �0.016 0.733 0.010 0.583
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metropolitan level, which again demonstrate that ischemic
heart disease drives the cardiopulmonary association with air
pollution.5

Among the cancer deaths, we also observe ordering in
the risks, with decreasing risks as we move from lung cancer
to digestive cancer to all cancers. Given that the lung would
be most directly affected by air pollution, this finding gives
corroborative evidence that the association did not occur
by chance.

The larger effects in LA raise the question of whether
some underlying aspect of this subcohort differs in charac-
teristics that modify the association between mortality and air
pollution. We compared the full cohort with the LA subco-
hort and found no major differences in attributes likely to
modify the air pollution–mortality association, with the ex-
ception that the LA cohort was better educated. Based on the
findings from the earlier analyses in which subjects with lower
education experienced larger health effects,1,2,4 we would expect
the effect size in LA to be smaller than in the full cohort. Thus,
differences in underlying characteristics appear unlikely to ex-
plain the larger effects we observed in LA.

In comparing our results with the earlier national-level
ACS studies, we examined the reduction in PM2.5 levels in
LA to 50 other metropolitan areas that had data for 1980 and
for the year 2000 we used in our study. (See Krewski et al2

for a description of the data.) The mean reduction was 31%,
with a range from 0.4% to 59%. LA experienced a reduction
of 24.5%, just above the lowest quartile of 23.5%. PM2.5 has
therefore declined at a slightly slower rate in LA compared
with much of the United States. If we assume that current
PM2.5 in LA is at 75.5% (ie, accounting for 24.5% reduction)

of the 1980 value and the average metropolitan area is at 69%
of the 1980 value, some of the increase in the risks may be
attributable to the relatively smaller reductions in LA. We
tested this scaling effect by computing the ratio of reductions
(0.69/75.5 � 0.914) and multiplied our raw coefficients by
this factor before estimating the RR. The RR declines for
all-cause mortality with the 44 individual variables to just
over 15% and with maximal adjustment for confounders to
10%. Although reduced by up to 1.6%, we conclude that the
majority of the increase over previous estimates reported by
Pope et al34 is probably not attributable to relative differences
in the rate of reduction in ambient air pollution.

The findings for endocrine deaths also reveal another
interesting possibility. Chronic air pollution exposure, similar
to acute exposures,34 may adversely affect people with dia-
betes more than the general population. Alternatively, the
finding may indicate some uncontrolled confounding because
we expect people with type 2 diabetes to live in neighbor-
hoods with poorer social environments. This possibility ap-
pears unlikely because of the extensive control we applied for
contextual neighborhood variables. This potential problem
appears improbable because we see internal validity in the
effects of social confounders measured in the zip code areas.

Although the accidental deaths were unexpectedly ele-
vated in men, subsequent analyses revealed that the risks
were attributable to deaths in the early years of the cohort
before causes of death were coded in detail. As a result, we
were unable to assess specific causes for this elevation.

Ozone had few elevated risks in any of our analyses and
did not confound the relationship between particles and
mortality. This finding agrees with earlier ACS studies indi-

FIGURE 2. Risk plots summarizing mortality relative
risks (RR) and 95% CIs associated with a 10-�g/m3

increase in ambient PM2.5 by cause of death.

Epidemiology • Volume 16, Number 6, November 2005 Air Pollution and Mortality in Los Angeles

© 2005 Lippincott Williams & Wilkins 733



cating that ozone is not associated with elevated mortality
risk,2,4 but contradicts studies on nonsmoking Adventists in
southern California, where associations between lung cancer
in males and ozone exposure were detected.35 Recent national
studies have reported elevated acute risks of ozone expo-
sure,30 but risk estimates were small, as would be expected of
a study on acute as compared with chronic effects.36

In assessing the association with freeway buffers, point
estimates were particularly elevated for lung cancer, endo-
crine, and digestive mortality. The PM—mortality associa-
tion remained robust to the freeway buffer, and risk estimates
were unchanged when this variable was included in the
model. Although imprecision in the freeway exposures re-
sulting from the zip code area assignment of proximity may
have biased our results toward the null, we did observe a RR
for lung cancer of 1.44, and the other cause-specific mortality
metrics indicate that more precise estimation of traffic effects
are warranted in future research.

In previous studies based on the ACS cohort, all indi-
viduals within the same metropolitan area were assigned the
same level of exposure based on the average ambient con-
centration observed at fixed-site air pollution monitors in that
city. We hypothesized that the use of such a broad ecologic
indicator of exposure leads to exposure measurement error,
which in turn can bias estimates of mortality associated with
air pollution exposure. Mallick et al37 analyzed the effect of
this source of exposure measurement error based on plausible
assumptions about error magnitude in the Six-Cities Study of
air pollution and mortality.6 This investigation suggested that
the RR of mortality resulting from particulate air pollution
may be underestimated by a factor of approximately 2- to
3-fold as a consequence of exposure misclassification, a
finding consistent with the present results.

We recognize the possibility of exposure measurement
error from using recent exposure models for a cohort enrolled
in 1982. There are empiric as well as theoretical reasons that
prevent this potential problem from seriously limiting the
results. Empirically, other ACS analyses done at the metro-
politan scale have found that these more recent exposure
estimates predicted mortality with results similar to those
based on earlier monitoring data.4 Also, the well-known
meteorologic and topographic conditions of LA, along with a
dominant on-shore breeze and steep mountains to the north
and east, control much of the spatial pattern of pollution in
the region. Our results agree with findings of earlier studies
on the pattern of spatial variation in PM.38 Although levels
may rise and fall in absolute terms, major changes in the
spatial patterns within the region over time appear unlikely,
and the rank ordering among assigned exposures should be
maintained.

From a theoretical perspective, even if spatially heter-
ogeneous changes to pollution levels within a city occurred as
a result of new emissions during the follow up, this would

lead to larger exposure measurement error, and a bias toward
the null would dominate, assuming a classic error structure.
With a Berkson error structure, the variance of the dose–
response estimate would be inflated.17 In either case, with
current exposure models, the health effects likely have a
lower probability of false-positive error, and we would expect
the measurement error to reduce effect sizes and inflate their
variance. High dose–response relationships can be caused by
underestimation of concentrations in the high-exposure areas,
but for these areas, the monitoring networks tend to be dense
and the kriging errors were smaller than in most of the study
area. Finally, the findings were robust to weighting for errors
in the kriging estimate (ie, eastern parts of the LA region),
which decreases the likelihood that elevated risks arise as a
result of underestimation in the high-exposure groups.

Although we are unable to reconstruct likely exposures
to PM2.5 for our exposure surface, we have assessed the
relationship at 51 central monitors between PM2.5 measured
in 1980 and those of a period similar to that of our 2000
estimates (ie, 1999–2000). These data were used in previous
national studies,4 in which details on their derivation are
available. Figure 3 illustrates the regression scatterplot for the
1999–2000 values on the 1980 measurements. The coeffi-
cient of determination is approximately 61%, and overall the
latter periods are predicted well by the earlier measurements.

In addition, we examined the relationship of historical
PM10 data in the LA area with the 2000 PM2.5 estimates used
in our analysis. The period of maximal overlap between the
sites occurs in 1993, where we had 8 PM10 readings at the
same locations as the subsequent PM2.5 measurements. By

FIGURE 3. 2000 PM2.5 regressed onto 1980 PM2.5 (n � 51
cities, R2 � 0.61).
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regressing the 2000 PM2.5 measurements on those PM10 mea-
surements in 1993, we observe an R2 value of 90% (Fig. 4).

In both of these correlation analyses comparing earlier
monitoring data with more recent PM2.5 measurements, we
found evidence that areas with higher particle concentrations
in earlier periods were likely to retain their spatial ranking.
Those metropolitan areas likely to be high in 1980 also had a
similar tendency in 2000.

Only the Norwegian cohort study has used time win-
dows of exposure.39 In this study, the authors found that
timing of the exposure window had little influence on the
estimation of health effects; they used exposure windows in
the middle of the follow-up period for most of their results.
All of the other cohort studies have taken a similar approach
to ours and computed the risk based on relatively short-term
air pollution monitoring data. A case–control study in Stock-
holm, Sweden, investigated time windows for lung cancer.40

This study found that windows of exposure 20 years before
disease onset were more strongly associated with cancer than
later periods. In our study, we found elevated risks of lung
and digestive cancers, even with the more recent exposure
model. The likely stability in the spatial pattern of exposure
in LA probably accounts for this similarity of our findings to
the 2 European studies that have used time windows.

Generally, our results agree with recent evidence sug-
gesting that intraurban exposure gradients may be associated
with even larger health effects than reported in interurban
studies. Hoek et al8 reported a doubling of cardiopulmonary
mortality (RR � 1.95; 95% CI 1.09–3.52) for Dutch subjects
living near major roads. Canadian cohort studies controlling
for medical care utilization and preexisting chronic condi-
tions through record linkage have also uncovered large health

effects with proximity to major roads at the intraurban
scale.16 Recent results from the cohort in Norway also sug-
gest associations between intraurban gradients in gaseous
pollutants and mortality.40 All of these studies have impli-
cated traffic as the source of pollution associated with the
larger observed effects. In LA, the proportion of primary
particles attributable to traffic is approximately 3.7%,
whereas in the rest of the country, it is 0.75%.41 Thus, beyond
improved precision in the exposure models, the larger health
effects reported here may be partly the result of higher
proportions of traffic particulate in LA.

No previous studies have assessed associations based
on a continuous exposure model with PM2.5, which limits the
use of the estimates for current policy debates that tend to
focus on fine particles. In this study, we used PM2.5 with a
continuous exposure metric that promotes comparison with
previous studies on health effects and contributes to current
regulatory debates.
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