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a b s t r a c t

Many studies have shown an association between air quality and acute deaths, and such associations are
widely interpreted as causal. Several factors call causation and even association into question, for
example multiple testing and multiple modeling, publication bias and confirmation bias. Many published
studies are difficult or impossible to reproduce because of lack of access to confidential data sources.
Here we make publically available a dataset containing daily air quality levels, PM2.5 and ozone, daily
temperature levels, minimum and maximum and daily maximum relative humidity levels for the eight
most populous California air basins, thirteen years, >2M deaths, over 37,000 exposure days. The data are
analyzed using standard time series analysis, and a sensitivity analysis is computed varying model pa-
rameters, locations and years. Our analysis finds little evidence for association between air quality and
acute deaths. These results are consistent with those for the widely cited NMMAPS dataset when the
latter are restricted to California. The daily death variability was mostly explained by time of year or
weather variables; Neither PM2.5 nor ozone added appreciably to the prediction of daily deaths. These
results call into question the widespread belief that association between air quality and acute deaths is
causal/near-universal.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

The purposes of this paper are threefold: First, we describe a
data set that we make publically available that is useful for time-
series analyses for air quality and acute deaths for California. Sec-
ond, we provide a primary and sensitivity analyses of the data set.
Third, we discuss the implications of our analysis results. We note
that we are looking for association and that association, if it is
present, does not prove causation.

Our first objective for the present study is to assemble a new,
large dataset available for analysis by other researchers. We ob-
tained daily counts of deaths, air quality levels for ozone and PM2.5,
daily minimum and maximum temperature and daily maximum
relative humidity, in the eight most populous air basins in Califor-
nia for the years 2000e2012. A map showing the air basins is given
in Fig. 1. We give the yearly PM2.5 and ozone levels for each air
basin in Table 1. We obtained over two million electronic death
certificates. We linked daily air quality data, ozone and PM2.5. The
Young), rls@email.unc.edu
US Clean Air Act has sections requiring the regulation of “criteria
Pollutants.” Recent regulatory attention, e.g. Clean Power Plan, is
focused on PM2.5 and ozone and those air quality constituents are
the focus of this paper. Air quality has improved dramatically over
the last 40 years (Schwartz and Hayward (2007)), so release of an
up to date data set is timely and important. We note that with the
release of our data set, in particular the daily mortality, other
constituents can be linked and analyzed. We examined over 37
thousand exposure days. The data are described in more detail in
Section 2.

It is important to get air quality/health effects data sets public as
data used in most environmental epidemiology papers is not
available. Many scientific bodies, Board on Life Sciences (2003),
Royal Society (2012), Office of Science and Technology Policy
(2013), support open access to data used in scientific papers. In
practice, there can be many obstacles both administrative and po-
litical. Cecil and Griffin (1985) note that “As an abstract principle,
the sharing of research data is a noble goal and meets with little
opposition. However, when data sharing is attempted in a partic-
ular circumstance, the conflicting interests of the parties can thwart
the exchange.” Our experience has been that it is difficult to get
public access to air quality/health effect data sets. Cecil and Griffin
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Fig. 1. Map of California air basins (Source: Webpage of the California Air Resources Board).

Table 1
Yearly PM2.5 and ozone levels for each air basin.

PM2.5 mountain-counties sacramento-valley salton-sea san-diego san-francisco san-joaquin south-central south-coast

2000 10.89 15.21 17.45 19.98 17.76 26.93 16.88 31.48
2001 14.05 21.06 16.27 19.99 15.57 26.63 17.56 36.73
2002 14.60 22.61 25.86 18.05 17.81 36.12 13.95 33.04
2003 18.00 19.40 32.64 17.67 15.65 28.83 14.31 28.76
2004 19.48 20.37 20.42 15.93 16.84 26.34 17.19 27.36
2005 18.18 21.68 18.80 14.13 15.77 25.65 15.69 24.64
2006 18.20 22.49 20.78 14.50 16.14 25.72 15.50 24.00
2007 20.64 19.97 25.53 19.37 17.22 31.32 17.60 23.19
2008 22.66 25.80 20.47 18.70 19.47 29.46 17.03 25.23
2009 19.19 18.42 20.24 17.56 15.07 26.73 14.41 24.93
2010 15.02 15.87 15.97 16.45 13.48 23.70 14.00 23.74
2011 21.46 20.15 17.58 17.94 15.07 25.42 16.70 26.22
2012 26.69 19.81 22.36 16.58 12.54 21.99 14.89 24.27
Ozone
2000 62.1 57.8 57.2 56.3 40.6 67.4 58.0 65.5
2001 63.1 57.4 60.8 56.1 42.7 71.4 59.0 68.2
2002 65.2 59.5 62.6 55.5 43.6 71.2 58.7 68.9
2003 64.3 57.8 59.8 54.7 43.4 70.2 59.9 70.1
2004 61.3 56.1 59.8 54.2 41.1 67.1 58.6 68.1
2005 58.2 54.9 59.6 55.2 41.1 61.8 57.4 65.7
2006 61.0 57.9 60.3 57.1 43.7 64.2 58.2 65.2
2007 58.3 55.4 58.8 56.1 41.4 62.3 58.1 64.5
2008 59.5 58.1 57.8 57.5 44.7 65.0 59.4 66.1
2009 56.0 55.1 58.7 55.2 42.0 60.6 55.5 64.3
2010 55.4 53.2 58.4 53.3 41.3 59.4 54.8 62.1
2011 55.4 54.7 56.6 52.5 41.3 61.4 55.1 63.2
2012 56.8 55.1 57.9 52.5 43.1 61.9 55.6 63.2
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go on to say, “This case suggests that an agency can insulate its
actions from public scrutiny by funding a grant for controversial
research and then basing its action on those findings. As long as the
agency does not take possession or control of the records, the FOIA
will not assist those who wish to challenge the findings that un-
derlie the agency action.” Researchers in environmental
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epidemiology are making major public health claims, yet very few
of the key data sets are available.

Our primary analysis method uses time series regression anal-
ysis (Bell et al. (2004), Bhaskaran et al. (2013), Clyde (2000),
Dominici et al. (2003), Samet et al. (2000a, 2000b), Smith et al.
(2009)). Time series regression analysis is a standard method of
analysis for air quality/health effects time series. The basic idea if a
time series regression analysis is to predict the mortality on any
given day using a variety of covariates, including meteorology,
seasonal and long-term trends, and the air pollution variable of
interest (in this analysis, either ozone or PM2.5). Typically, lagged
values of the meteorological and air pollution variables are
included, to take account of effect that may persist over several
days. Some analyses use other pollution variables as co-pollutants,
to take account of possible interactions among the health effects of
different pollutants. The analyses are conducted onmore than 4700
days for each air basin for both ozone and PM2.5. Initially we treat
each air basin separately as we want to be able to judge how any
observed effect replicates. Then, results from the individual air
basins are combined to obtain an overall estimate of the coefficient
between mortality and the air pollutant of interest. The methods
are sketched in Section 2 and the results are given in Section 3.
More details are provided in the Supplemental Material.

To examine our primary analysis, we conduct an extensive
sensitivity analysis. We build models of varying complexity. We
hold out data and predict the held out data. In total we compute
78,624 models to examine the reliability of our modeling. We find
that adding ozone or PM2.5 to models does not improve our esti-
mate of acute mortality. The air quality variables are essentially
without predictive power.

Causal inference methods are being increasingly applied in the
analysis of air pollution data (Zigler et al. (2016); Gilliland et al.
(2017). However, it is difficult if not impossible to infer a causal
relationship in cases when there is not even evidence of associa-
tion. Our paper presents data and analysis saying there is no as-
sociation of acute mortality with ozone or PM2.5 in California and
that calls into question that ozone or PM2.5 CAUSE acute mortality.

The results of this research are present in two parallel pre-
sentations. In this paper we present our work in a largely non-
technical manner. The analysis of large observational data sets in
necessarily complex so we provide that technical detail in our
Supplemental Material. The rest of the non-technical paper is
organized as follows. Analysis of large, complex observational time
series data sets requires many analysis choices. Methods are
described in Section 3 including Time Series Regression and an
extensive sensitivity analysis. Results are given in Section 4. In
Section 5 we discuss literature and our interpretation of our results.

2. Data

2.1. Mortality

The state of California provides access to the death public use
files for the purpose of research. The cause of death is indicated by
an ICD 10 code and provided by the Department of Health Services
Center for Health Statistics. The mortality data we used can be
obtained from the California Department of Public Health, www.
cdph.ca.gov. The total number of deaths of individuals over
65e74 and 75 þ years of age with group cause of death categorized
as AllCauses or HeartLung where HeartLung deaths were attributed
to “Diseases of the Circulatory System” or “Diseases of the Respi-
ratory System”. We created four outcome death categories: 65e74
AllCause, 65e74 HeartLung, 75 þ AllCause, 75 þ HeartLung. Acci-
dental deaths were excluded. All deaths were aggregated to a day,
year and air basin.
2.2. Air quality

The California Environmental Protection Agency's Air Resources
Board provides an Air Quality Data (PST) Query tool at the following
website http://www.arb.ca.gov/aqmis2/aqdselect.php. Daily data
can be retrieved for each combination of basin, day, and year. The
following statistics were retrieved on July 19, 2014:

1. Daily Average PM 2 .5 in mg m�3

2. Daily Average Ozone in parts per billion (ppb)
3. DailyMax 8 Hour Overlapping Average Ozone - State Data in ppb
4. Daily Max 8 Hour Overlapping Average Ozone - National Data in

ppb
2.3. Temperature

The Carbon Dioxide Information Analysis Center (CDIAC)
maintains data from the United States Historical Climatology
Network. Daily temperature data was retrieved from the following
website http://cdiac.ornl.gov/ftp/ushcn_daily/ for each combina-
tion of basin, day, and year the minimum and maximum temper-
ature was obtained.

2.4. Humidity

The US Environmental Protection Agency maintains daily hu-
midity data. Daily humidity data was downloaded from http://
www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm
for each combination of basin, day, and year.

2.5. Data displays

Fig. 2 shows that mortality and ozone levels are out of phase. As
ozone goes up, mortality goes down. We follow the usual conven-
tion and look at deviations from the time trends. Fig. 3a shows daily
mortality data for South Air basin and Fig. 3b shows the daily
mortality after the seasonal trend is removed.

3. Statistical methods

3.1. Introduction to time series regression strategy

Time series regression is a highly develop area of statistical
regression analysis for examination of a possible linear relationship
between a health effect and an air quality variable where data is
available at time points, most often daily. It is useful to review
multiple linear regression in general and then how it is applied to
time series analysis. First consider some necessary notation:

fðEðYtÞÞ ¼ b0 þ b1X1t þ b2X2t þ b3X3t þ b4X4t þ…þ bpXpt

þ buXut

(1)

Inwords, some function of expectedmortality, Yat time t, can be
approximated as a linear sum of an intercept, b0, and p observed
quantities. Xu represents one or more unmeasured items, discussed
shortly. The b’s are theoretical and are estimated from data. The
estimated quantities are called regression coefficients, the b’s. The
linear relationship is not exact so an error term is added to make
the relationship an equation. Let X1t be an air quality variable, e.g.
ozone or PM2.5. The remaining variables are things that might affect
mortality; they are called covariates. The interest is in the magni-
tude and sign of b1, the estimate of b1. We can rewrite 3.1 as follows:

http://www.cdph.ca.gov
http://www.cdph.ca.gov
http://www.arb.ca.gov/aqmis2/aqdselect.php
http://cdiac.ornl.gov/ftp/ushcn_daily/
http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm
http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm


Fig. 2. Plot of the moving medians for All Cause deaths and ozone, o3, versus time in days.
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Yt � g
�
:; b0 þ b1X1t þ b2X2t þ b3X3t þ b4X4t þ…þ bpXpt

þ buXut; q
�

(2)

where g is a probability density function and q is a possible addi-
tional parameter representing the scale or shape of the distribution.
The basic idea is that some function of mortality, linearly corrected
for known confounders, is equal to an air quality effect plus any
effect of one or more unknown confounders. We depend that the
relationship is linear. We also depend that there are no unmeasured
confounders, or that their effect is much smaller than and any air
quality effect.

The interpretation of themodel is that if one of the variables, say
X1t, is the air pollution variable of interest, then the corresponding
parameter, b1, is the coefficient of mortality based on that air
pollution variable.

The sophistication comes into the analysis by the selection of
the covariates and the care to not have important covariates/con-
founders left out of the model. It is well-known that mortality
varies with the season, higher in winter and lower in summer, so
that today's mortality has to be corrected for this seasonal effect. It
is thought that air quality today might exert its effect on mortality
some days later so that potential lag effects need to be considered. It
is thought that the day of the week might have an effect on mor-
tality. It is generally agreed that if there is an effect of air quality on
mortality, the effect is stronger on older individuals.

Themodel is usually assumed to be log-linear; we take the log of
expected mortality. The analysis decisions include: What time se-
ries smoother is chosen? Do we summarize the time variable to
day, week, etc? Which outcome variables are used? Which air
quality variables are used as predictors? Weather variables are
typical covariates, e.g. min Temp, max Temp, maximum daily
relative humidity, and wind speed. Any of the predictor or cova-
riates might be lagged one or more days. Table 2 gives some of the
modeling choices. There are many thousands of possible models.
Nevertheless, certain choices have become standard in the litera-
ture on time series modeling of air quality and daily mortality data.
The next section shows how some of these standard choices may be
applied to the present datasets.

3.2. Specific time series regression model

The time series model is adapted from models previously used
for the National Morbidity, Mortality and Air Pollution Study
(NMMAPS) data series; see in particular Dominici et al. (2003), Bell
et al. (2004), and Smith et al. (2009). These methods are reviewed
inBhaskaranet al. (2013). The codeused for the results in thepresent
paper is at www.unc.edu/~rls/EpiTimeSeriesCodeRLS.txt, S02 Sup-
plement Code for Time Series. A data dictionary is given in S03a. The
data used in this analysis is given in S03b. The specificmodels use for
time series regression and the sensitivity analysis are given in our
arXiv technical report, arXiv.org > stat > arXiv:1502.03062. Smith
(2015) give R code for time series regression modeling.

3.3. Sensitivity analysis

The purpose of this analysis is to understand the sensitivity of
the models to different modeling selections. The two goals of the
sensitivity analysis were to determine if is there a consistent model
that best predicts mortality across years and air basins and the
sensitivity of the predictions to the modeling assumptions. We
assessed sensitivity using a leave-one-year-out, cross-validation
strategywhere, for eachmodel, each year (2001e2012) was left out,
the remaining 11 years was used to fit the model, and predictions
were obtained for each day in the year omitted from the model
fitting. Year 2000 was omitted from the sensitivity analysis due to
the complications of missing data. This sensitivity analysis was
accomplished by designing a factorial experiment to define the
model specifications. We consider the following variables with the
corresponding number of levels: air basins (8); health endpoints
(4); air quality (7); maximum relative humidity (3); maximum
temperature (3); minimum temperature (3); and time (1). An
additional 13-level factor was considered by holding out each year
from the model fitting process. Crossing the levels and omitting
duplicate situations yielded 78,624 models that were considered.
Predictions from the corresponding hold out years of each model

http://www.unc.edu/%7Erls/EpiTimeSeriesCodeRLS.txt
https://arxiv.org


Fig. 3. a. Daily All Cause deaths versus day and b. daily AllCause deaths versus day after removing time trend.

Table 2
Analysis decisions for Time Series Regression.

RowID Model Item Values

1 Time Series
Smoother

Spline, moving average, …

2 Unit of Time Day, week, month, etc.
3 Predictor PM2.5, ozone, NO2, SO2, CO, …
4 Lag No lag, lags of 1 day, etc. Sums

of lags of two or more days, …
5 Weather

Covariates
MinTemp, maxTemp, avTemp, RH, wind speed, …

6 Events Forest fires, windblown air pollution,
changed regulations, …
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were calculated.
In summary, for each of 13 � 8 � 4 ¼ 416 unique combinations

of “hold out year”, basin and health endpoint, 7x3x3x3x1 ¼ 189
models are fit using the remaining 12 years of data. Predictions for
“hold out year” are obtained for each of the 189 models and the
predictive capabilities are compared.
4. Results

4.1. Selected results for time series regression

4.1.1. South Coast air basin
The approach outlined in Section 3.2 is applied to data from each

of eight California air basins, Fig. 1. We concentrate initially on the
two most populated air basins, South Coast and San Francisco Bay.
The response variable is total non-accidental mortality among
people aged 65 and over. For South Coast, running the analysis
initially without air quality variables, Table S1 in S04 shows that
five of the six meteorological variables (the exception is current-
day maximum relative humidity) are very highly significant;
since there is no obvious advantage to dropping the one non-



Table 4
Statistical significance of PM2.5 components with various combinations of lags:
based on model (1) df0 ¼ 7, df1 ¼ df2 ¼ 6. Estimate is percent rise in mortality for
10 mg/m3 rise in PM2.5. South Coast air basin; response variable is non-accidental
mortality aged 65 and over.

Lags Included Estimate SE t-value p-value

0 0.1212 0.0999 1.21 0.220
1 �0.1981 0.0992 �2.00 0.046
2 �0.2131 0.0996 �2.14 0.032
0,1 �0.0469 0.1146 �0.41 0.680
1,2 �0.2744 0.1153 �2.38 0.017
0,1,2 �0.1179 0.1297 �0.91 0.360
0,1,2,3 �0.1657 0.1508 0.52 0.600
0,1,2,3,4 �0.1624 0.1503 �1.08 0.280
0,1,2,3,4,5 �0.2621 0.1586 �1.65 0.098
0,1,2,3,4,5,6 �0.2437 0.1663 �1.46 0.140

Table 5
Statistical significance of meteorological components: based on model (1) without
air pollution component and with df0 ¼ 7, df1 ¼ df2 ¼ 6, fitted to nonaccidental
mortality for ages 65 and up, San Francisco Bay air basin.

Variable Lags p-value

Daily Max Temperature Current day 0 6.40E-10
Daily Max Temperature Mean of 1,2,3 0.0075
Daily Min Temperature Current day 0 0.001
Daily Min Temperature Mean of 1,2,3 0.048
Mean Daily Relative Humidity Current day 0 0.56
Mean Daily Relative Humidity Mean of 1,2,3 0.34
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significant variable, we retain all six for subsequent analysis.
Table 3 shows the estimates, standard errors (SE), t-values and

p-values of percent rise in mortality per 10 ppb rise in ozone, at
various combinations of lags. The strongest positive estimate is
based on lags 0, 1, 2 and 3, for which the model predicts a 0.1% rise
in mortality per 10 ppb rise in ozone, but neither this nor any of the
other values in the table is statistically significant; we detect no
increase in mortality as ozone increases.

Corresponding results using PM2.5 are shown in Table 4. Several
estimates appear statistically significant at p < 0.05 (smallest
p ¼ 0.017), but all slopes are negative, which is not biologically
plausible as it indicates a decrease in mortality. We conclude that
either the small p-values are an artifact of chance, selection bias, or
there is some other biological mechanism leading to a confounded
result.

In these analyses, the over-dispersion parameter was of the
order of 1.07 e in other words, the variance of the mortality vari-
ables is inflated by a factor of 1.07 compared with the Poisson
distribution. This is typical for this kind of analysis and does not
indicate a problem. A much larger over-dispersion parameter could
indicate some important missing covariates.

4.1.2. San Francisco Bay air basin
The meteorological analysis shows that daily maximum and

daily minimum temperature are significant, but neither current-
day nor lagged maximum relative humidity. See Table 5. The
ozone models show a statistically significant result for lag 0 or
distributed lags 0 and 1 only when maximum relative humidity is
omitted from the model; for example, the distributed lags (0,1)
coefficient is 0.59 with a standard error of 0.26 and p-value 0.02.
Results for PM2.5 are similar: mildly significant results (p ¼ 0.02 or
0.04) are obtained in distributed lag models without maximum
relative humidity and including multiple lags (0 through 5 or 6);
other models do not yield a statistically significant results. Given
the large number of models tried and the relatively moderate p-
values, we doubt that these results are evidence of a causal effect.
More details are given in the S04.

4.1.3. Combining results across air basins
In the NMMAPS papers on ozone, Smith et al. (2009) and Bell

et al. (2004), single-city analyses were repeated for up to 98 US
cities and then combined using a hierarchical model, based on an
algorithm originally due to Everson and Morris (2000) and coded
by Roger Peng into the R function “tlnise” (R Core Team, 2015). The
same method is used to produce estimates that are combined
across all eight air basins in our study.

The results of this analysis are shown in Table 6. None of the
analyses shows a statistically significant effect when combined
Table 3
Statistical significance of ozone component with various combinations of lags: based
on model (1) df0 ¼ 7, df1 ¼ df2 ¼ 6. Estimate is percent rise in mortality for 10 ppb
rise in ozone. South Coast air basin; response variable is non-accidental mortality
aged 65 and over.

Lags Included Estimate SE t-value p-value

0 0.0869 0.1136 0.76 0.44
1 �0.0540 0.1134 �0.48 0.63
2 0.0443 0.1142 0.39 0.70
0,1 0.0222 0.1315 0.17 0.87
1,2 �0.0062 0.1329 �0.05 0.96
0,1,2 0.0788 0.1508 0.52 0.60
0,1,2,3 0.1143 0.1673 0.68 0.49
0,1,2,3,4 0.0857 0.1803 0.48 0.63
0,1,2,3,4,5 0.0047 0.1906 0.03 0.98
0,1,2,3,4,5,6 �0.0537 0.1993 �0.27 0.79
across all eight air basins.
In S04, we report sensitivity analyses associated with different

choices of response variable or degrees of freedom for the nonlinear
spline components, and also, comparisons with results for the
NMMAPS dataset.
4.1.4. Nonlinear distributed lag models
Additional analyses, S04, replaces the linear exposure-response

relations with nonlinear relationships (modeled by splines).
Selected model results are shown here in Figs. 4 and 5. These two
figures show no effect of ozone or PM2.5 on mortality after other
covariates are taken into account across the entire range of the air
quality variables.
4.2. Sensitivity analysis results

We considered the total deaths in four categories:

1. All cause deaths with accidents removed of individuals age
[65,74]

2. All cause deaths with accidents removed for individuals
age � 75

3. Death by diseases of the respiratory or circulatory systems for
individuals age [65,74]
Table 6
Combined results across all eight air basins.

Variable Lags Estimate SE t-value p-value

Ozone 0,1 0.3376 0.2434 1.39 0.17
Ozone 0,1,2 0.3165 0.2466 1.28 0.20
Ozone 0,1,2,3 0.4149 0.3260 1.28 0.20
PM2.5 0,1 0.0126 0.2034 0.06 0.95
PM2.5 0,1,2,3 �0.0006 0.2464 0.00 1.00
PM2.5 0,1,2,3,4,5 0.0689 0.2799 0.25 0.81



Fig. 4. Nonlinear dependence of mortality on ozone for South Coast air basin. Blue dots: residuals from the model that includes long-term trends, day of week and meteorology,
plotted against the air pollution variable (ozone). Red solid and dashed curves: implied change of relative risk with respect to ozone level 0.075 ppm (the current ozone standard),
with pointwise 95% confidence bands. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4. Death by diseases of the respiratory or circulatory for in-
dividuals age � 75

All methods were carried out for each health endpoint. For the
sake of notation, let Yijk generically indicate the response variable
for the corresponding basin, day and year. For the sensitivity
analysis only, due to missing data in 2000, results for that year as
the hold-out year are omitted due to large numbers of missing
predictions. The following levels of covariates were considered in
the subsequently defined generalized linear model, GLM.

By partitioning the air quality variable into two groups, Ozone
(design levels 1, 2, 3, and 4) and PM2.5 (design levels 1, 5, 6, and 7),
108models were isolated for each combination of air quality group,
Fig. 5. Nonlinear dependence of mortality on PM2.5 for San Francisco Bay air basin. Analog
nonlinear model for the relationship between PM2.5 and mortality. The relative risk was com
of PM2.5.
basin, year, and response. Note 27 models appear in both groups
because of the null level (level 1) of the air quality variable. A total
of 78,624 models were computed. A data set of modeling results is
available, S07.

The observed values for each combination of basin, year, and
response were plotted (open circles) and the predictions from the
108 models were added to the same plot (solid red lines). Consider
the results for the number of deaths caused by diseases of the
respiratory or circulatory systems individuals age greater than or
equal to 75 for the South Coast air basin for the Ozone group, Fig. 6.

Despite various forms of the 108 models, variability of the pre-
dicted values is relatively small as illustrated by overlapping red
lines. Because the predictions are point estimates, prediction
ous to Fig. S4, using the full meteorological model (including relative humidity), and a
puted with respect to a reference level of 35 mg/m3, the current standard for daily max
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intervals accounting for uncertainty overlap and thus make pre-
dictions virtually indistinguishable, Gasparrini and Armstrong
(2013), Gasparrini, (2011). In terms of predictive performance, the
models perform equally well. Note a similar result for the other air
basins in both ozone groups and the PM2.5 groups regardless of
outcome (S05 Figs. A1-A32 and S06 Figs. B1-B32).

Mean squared prediction error (MSPE) was obtained for each
model using data from the year that was held out. For each com-
bination of air quality group, basin, year, and response, the MSPE of
the model that only includes time as a covariate, MSPEt , was used to
calculate the ratio

Rm=t ¼
MSPEm
MSPEt

;

for each value m ¼ 1;…;108 indexing the 108 models considered
for that combination of air quality group, basin, year and response.
For a given model, if the ratio is greater than 1, then the model that
only included time had a smaller MSPE and if the ratio is less than 1,
then the correspondingmodel had anMSPE smaller than themodel
that only included time. A boxplot of the 108 MSPE ratios, Rm/t, for
each combination of air quality group, basin, year, and response are
presented in Fig. 7. S08 (ozone) and S09 (PM2.5) give Box plots for
different combinations of air basin, age class, and year. With few
exceptions, the MSPE ratios all overlap 1.00. We interpreted this
result that the extra variables did not improve the fit of the model,
i.e. the terms were not necessary.
Fig. 6. South Coast (LA). Model hold out predictions for each year except 2000. “o” are obs
across the models is negligible as illustrated by overlapping red lines. (For interpretation of t
this article.)
Consider the ratios of theMSPE of each of the 108models for the
same subset of data, number of deaths caused by diseases of the
respiratory or circulatory systems individuals age greater than or
equal to 75 for the South Coast air basin for Ozone group, Fig. 7.
Recall a Rm/t value greater than 1 indicates the model had an MSPE
larger than themodel that include time effects only, and if the value
of Rm/t is less than 1 then the model had an MSPE smaller than the
model that included time only. Note that in general the ratio fell
between 0.98 and 1.02. The variability of the ratio changes
depending on which year is held out. The form of the model with
the best MSPE (i.e. the smallest ratio) was not the consistent across
year (S07 Supplementary data file, Prediction analysis results). In
summary, the boxplots indicate that the differences in point-
estimate predictions for hold-out years are small and there is not
a consistent best form of the model. This result is consistent across
health endpoint, air quality group, and basin, S08 and S09.

None of the model variables, including ozone or PM2.5, consistently
improve on the model using just day of year; histograms of the ratios
of predictive performance, any model relative to a model with just
day of year. Fig. 8, show ratios consistently near one indicating that
nomodel for mortality improves on amodel with just day of year as
a predictor.
5. Discussion

There is considerable literature in support of the current para-
digm that air quality is associated with acute mortality. See, for
erved deaths and the red overlay are model predictions. Note variability in predictions
he references to colour in this figure legend, the reader is referred to the web version of
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example, the review paper by Atkinson et al. (2014). Here we make
the case that there is literature support for our findings of no as-
sociation, and we offer some explanation for claims made in the
current literature.

In this paper we analyze daily death data for the eight most
populous air basins in California for associations with air quality.
We found no associations using regression-based time series
analysis. Extensive sensitivity analyses found air quality variables
do not add to the predictive ability of the models examined. Even
when the predictive ability is improved, the improvement is
negligible relative to a model that only uses time of year. The form
of the air quality variable that comes into models is inconsistent
across basin/year combinations. In short, we were unable to find a
consistent and meaningful relationship between air quality and
acute death in any of the eight California air basins considered.

This result appears to contradict results from the well-known
NMMAPS study that studied ozone and PM10, and subsequent
studies involving PM2.5, e.g. HEI reports, Samet et al. (2000a,
2000b), Health Effects Institute (2003), Bell et al. (2004),
Dominici et al. (2007), Zanobetti and Schwartz (2009), Smith
et al. (2009). However, all of these were national studies. The pre-
sent study is restricted to California, because we have been unable
so far to compile a full-US dataset for post-2001. The ozone results
that we have derived are consistent with those of the NMMAPS
dataset when restricted to California, as shown in the S04. Note that
in the context of ozone, Bell and Dominici (2008) and Smith et al.
(2009) both drew attention to geographical heterogeneity in the
pollution-mortality relationship; the present results show that this
is an issue in post-2001 data as well. In addition, we find no effect
for PM2.5 for California.

The question of chronic air quality mortality effects are
addressed by Enstrom (2005) who found no chronic effects in
California. His summary for all cause deaths for California is given in
Fig. 7. South Coast, ozone, respiratory or circulatory systems deaths, 75 and older. Box plots
by varying the modeling variables.
Table 7. The average risk ratio was 0.9979, with a standard error of
0.0126.

The standard method for showing cause and effect is through an
experiment. A factor is changed and the result is examined. If the
result changes with a change in the factor, then there is evidence for
causality; See the Craig et al. (2012) discussion of natural experi-
ments. Chay et al. (2003) examined a natural experiment: the EPA
mandated reductions in air pollution for 270 of 501 counties
studied. They found that air pollution levels were reduced, but there
was no reduction in deaths after adjustments for covariates. Recently,
an increase in PM2.5 due to forest fires, a natural experiment, did
not lead to an increase inmortality, Zu et al. (2016). Their result that
improved air quality did not improvemortality was confirmed in an
observational study by Cox et al. (2013).

How can the disparate claims be rectified? Multiple testing,
multiple modeling, Clyde (2000), and publication bias might
contribute. Covariate adjustments offers an additional explanation.
Greven et al. (2011) state in their abstract, “… Results based on the
global coefficient indicate a large increase in the national life ex-
pectancy for reductions in … the average of PM2.5. However, …
trends in PM2.5 and mortality is likely to be confounded by other
variables trending on the national level …. Based on the local coef-
ficient alone, we are not able to demonstrate any change in life ex-
pectancy for a reduction in PM2.5.” (Italics added.) In short, the claims
made depend on howwell covariates are taken into account. When
they are taken into account, Styer et al. (1995), Chay et al. (2003),
Janes et al. (2007), Greven et al. (2011), Cox et al. (2013), and
Young and Fogel (2014) and the analysis provided here, there is no
association of air quality with deaths.

Many authors have noted “geographic heterogeneity”, the
measured effect of air quality is not the same in different locations,
Smith et al. (2009), Young and Xia (2013), Greven et al. (2011),
Young and Fogel (2014). Multiple authors, Smith et al. (2009),
of hold one year out of mean square prediction errors, MSPE. The predictions are made



Fig. 8. Distribution of ratios of models fit with only time of year as a predictor and models that included air quality as well as weather variables. For a given model, if the ratio is
greater than 1, then the model that only included time had a smaller MSPE; if the ratio is less than 1 then the corresponding model had an MSPE smaller than the model that only
included time.

Table 7
All Cause risk ratios for PM2.5 deaths in California (See Enstrom, 2011).

References Years Risk
Ratio

Confidence
Limits

McDonnell et al. (2000) 1976e1992 1.03_ 0.95_e1.12_
Krewski (2000) 1982e1989 0.872 0.805e0.944
Enstrom (2005) 1973e1982 1.039 1.010e1.069
Enstrom (2005) 1983e2002 0.997 0.978e1.016
Enstrom (2006) 1973e1982 1.061 1.017e1.106
Enstrom (2006) 1983e2002 0.995 0.968e1.024
Zeger et al. (2008) 2000e2005 0.989 0.970e1.008
Jerrett (2010) 1982e2000 0.994 0.965e1.025
Krewski (2010) 1982e2000 0.960 0.920e1.002
Krewski (2010) 1982e2000 0.968 0.916e1.022
Jerrett (2011) 1982e2000 0.994 0.965e1.024
Jerrett (2011) 1982e2000 1.002 0.992e1.012
Lipsett et al. (2011) 2000e2005 1.01_ 0.95_e1.09_
Ostro et al. (2010) 2002e2007 1.06_ 0.96_e1.16_
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Young and Xia (2013), Krewski et al. (2000), Jerrett (2010), have not
found any association of air quality with acute deaths in California.
Nor did our reanalysis of the California data from NMMAPS. The
existence of this “geographic heterogeneity” shows it is unlikely
that air quality is causing deaths everywhere. Given that geographic
heterogeneity exists, how should it be interpreted? First, statistical
practice says that if interaction exists, recommendations should be
site-specific. At a minimum, our analysis and literature data indi-
cate that California should be considered separately from the rest of
the US.

The question of interactions of air quality with geography de-
serves deeper consideration. Both Greven and Chay state there is no
local or covariate adjusted effect of air quality on mortality.
Milojevic et al. (2014) studied heart attacks and stroke in a very
large UK data set. They determined the time of the event down to
the hour. They studied six air components: CO, NO2, O3, PM10,
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PM2.5, and SO2. They examined possible lag effects and they found
no lag effects. They also essentially found no association of air
quality, in particular ozone and PM2.5, with heart attacks or stroke.
There were ten necropsies (among the 60 deaths) with the air
pollution disaster in 1930 in the Meuse Valley reported on by
Nemery et al. (2001). They report no effect on heart. They go on to
state, “However, carbon particles should have been innocuous,
unless they had adsorbed irritant acids. … After a process of suc-
cessive elimination, the commission concluded ‘that the sulphur
produced by coal burning had a deleterious effect, either as
sulphurous anhydride of acid, or as sulphuric acid, the production
of which was made possible by unusual weather conditions.’”
Together these papers effectively remove heart attacks and stroke
as a possible etiology for acute air quality deaths. Given the known
poor reliability, Ravakhah (2006), of death certificate cause of
death, analysis of all cause deaths make sense as the primary
endpoint of analysis.

The EPA states that “An extensive body of scientific evidence
indicates that breathing in PM2.5 over the course of hours to days
(short-term exposure) and months to years (long-term exposure)
can cause serious public health effects that include premature
death and adverse cardiovascular effects.” See www3.epa.gov/pm/
2012/decfshealth.pdf. The EPA goes on to say, “Most of the economic
benefits (about 85 percent) are attributable to reductions in pre-
mature mortality associated with reductions in ambient particulate
matter.” These and similar quotes from EPA seem to imply that
causal associations are assumed. The present study calls into
question whether those associations are genuine at all in the state
of California. Given that California is the most populous state of the
Union, the national benefits of recent tightening of the ozone and
PM2.5 standards may have to be re-assessed. We provide our
analysis code, data set and sensitivity analysis results so that others
can do their own evaluation.

As a note, the current standards (a) for PM2.5 e daily limit of
35 mg/m3, annual mean 12 mg/m3 averaged over three years and (b)
Ozone: daily max 8-h average less than 70 ppb; based on the three-
year average of fourth highest value per year. Past justifications for
these standards rely heavily on positive associations for ozone or
PM2.5 with acutemortality, which do not accord with our results in
California.

In summary, our empirical evidence, supported by literature and
logic, is that current levels of air quality, ozone and PM2.5, are not
associated with or causally related to acute deaths for California.
Our results, well summarized in Figs. 4 and 5, show no effect of
ozone or PM2.5 at 12 mg/m3 or across all doses examined. There is
no indication of any effect at low doses, for example. These results
should be taken into account in any future revisions of the NAAQS
for PM2.5 and O3.
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